Electroplasticity
   HOME

TheInfoList



OR:

Electroplasticity, describes the enhanced plastic behavior of a solid material under the application of an
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
. This electric field could be internal, resulting in current flow in
conducting Conducting is the art of directing a musical performance, such as an orchestral or Choir, choral concert. It has been defined as "the art of directing the simultaneous performance of several players or singers by the use of gesture." The primary d ...
materials, or external. The effect of electric field on mechanical properties ranges from simply enhancing existing
plasticity Plasticity may refer to: Science * Plasticity (physics), in engineering and physics, the propensity of a solid material to undergo permanent deformation under load * Behavioral plasticity, change in an organism's behavior in response to exposur ...
, such as reducing the
flow stress In materials science the flow stress, typically denoted as Yf (or \sigma_\text), is defined as the instantaneous value of stress required to continue plastically deforming a material - to keep it flowing. It is most commonly, though not exclusively ...
in already
ductile Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversi ...
metals, to promoting plasticity in otherwise brittle
ceramics A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porce ...
. The exact mechanisms that control electroplasticity vary based on the material and the exact conditions (e.g.,
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, strain rate,
grain size Grain size (or particle size) is the diameter of individual grains of sediment, or the lithified particles in clastic rocks. The term may also be applied to other granular materials. This is different from the crystallite size, which ...
, etc.). Enhancing the plasticity of materials is of great practical interest as plastic deformation provides an efficient way of transforming raw materials into final products. The use of electroplasticity to improve processing of materials is known as electrically assisted manufacturing.


History

Electroplasticity was first discovered by Eugene S. Machlin, who reported in 1959 that applying an electric field made
NaCl Sodium chloride , commonly known as edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs as the mineral hali ...
weaker and more ductile. Since then, the effect of electric fields on plasticity has been studied in many materials systems including
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
, ceramics, and
semiconductors A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping levels ...
. Various mechanisms have been posited to explain electroplastic effects and their dependence on materials properties and external conditions. For most materials the electroplastic effect arises from a combination of multiple mechanisms. This should not be all that surprising given that the electric fields directly affect
electrons The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
which dictate the bonding in materials and therefore all higher level phenomena such as dislocation motion, flow stress, vacancy diffusion, etc.


Electroplasticity in Metals

The application of DC electric fields is known to reduce the flow stress of metals and metal
alloys An alloy is a mixture of chemical elements of which in most cases at least one is a metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have properties ...
while increasing the fracture strain. Several mechanisms have been put forth to explain this effect including
Joule heating Joule heating (also known as resistive heating, resistance heating, or Ohmic heating) is the process by which the passage of an electric current through a conductor (material), conductor produces heat. Joule's first law (also just Joule's law), ...
, electron wind force, dissolution of metallic bonds, and unpinning of dislocations due the induction of magnetic fields. None of these mechanisms on their own can sufficiently explain the full extent of electroplasticity in metals. The application of electric fields has been shown to enhance the effect of
superplasticity In materials science, superplasticity is a state in which solid crystalline material is deformed well beyond its usual breaking point, usually over about 400% during tensile deformation. Such a state is usually achieved at high homologous temper ...
which occurs in polycrystalline metals at high homologous temperatures (T>0.5Tm). This is likely due to the electric field reducing
cavitation Cavitation in fluid mechanics and engineering normally is the phenomenon in which the static pressure of a liquid reduces to below the liquid's vapor pressure, leading to the formation of small vapor-filled cavities in the liquid. When sub ...
, which can lead to premature fracture, and grain growth, which can prevent superplastic flow due to grain boundary sliding, in addition to reducing the
activation energy In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. The activation energy (''E''a) of a reaction is measured in kilojoules per mole (k ...
for grain boundary sliding. The strength of the electroplastic effect scales with the magnitude of the applied electric field past some threshold value. While the application of an electric field typically augments the plasticity of metals there are alloy systems that show a reduction in plasticity. Conrad and Li found that the activation energy for grain boundary sliding in Zn-5 wt.% Al increased by nearly 20% under the application of a 2 kV cm^ DC electric field, resulting in more difficult deformation.


Electroplasticity in Ceramics

The application of electric fields to ceramics can give rise to plasticity in materials that traditionally exhibit no plastic deformation. High homologous temperatures are, however, typically necessary to achieve significant plastic deformation in ceramic materials. Plastic deformation ceramic
oxides An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation state o ...
was found by Conrad et al. to occur under relatively modest electric field strengths (0.02-0.32 kV cm^). Strain-mediating defects such as vacancies and dislocations tend to be charged in ceramic materials due to the ionic or
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
nature of bonding. Thus, the movement of electrons can have a direct impact on the mobility of these defects in ceramics and subsequent plastic deformation. The primary effect of the electric field in the deformation of fine-grained ceramic oxides is to shift the diffusion pathway from bulk diffusion to grain boundary diffusion, resulting in greater diffusion and easier grain boundary sliding.{{Cite journal , last1=Campbell , first1=J. , last2=Fahmy , first2=Y. , last3=Conrad , first3=H. , date=November 1999 , title=Influence of an electric field on the plastic deformation of fine-grained Al2O3 , url=http://dx.doi.org/10.1007/s11661-999-0119-4 , journal=Metallurgical and Materials Transactions A , volume=30 , issue=11 , pages=2817–2823 , doi=10.1007/s11661-999-0119-4 , bibcode=1999MMTA...30.2817C , s2cid=136817773 , issn=1073-5623, url-access=subscription


References

Electrochemistry Materials science