HOME

TheInfoList



OR:

An electrode is an
electrical conductor In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow of negatively c ...
used to make contact with a nonmetallic part of a circuit (e.g. a
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
, an
electrolyte An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
, a
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
or a gas). In
electrochemical cell An electrochemical cell is a device that either generates electrical energy from chemical reactions in a so called galvanic cell, galvanic or voltaic cell, or induces chemical reactions (electrolysis) by applying external electrical energy in an ...
s, electrodes are essential parts that can consist of a variety of materials (chemicals) depending on the type of cell. An electrode may be called either a
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional curren ...
or
anode An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
according to the direction of the electric current, unrelated to the potential difference between electrodes.
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English chemist and physicist who contributed to the study of electrochemistry and electromagnetism. His main discoveries include the principles underlying electromagnetic inducti ...
coined the term "" in 1833; the word recalls the Greek ἤλεκτρον (, "amber") and ὁδός (, "path, way"). The electrophore, invented by Johan Wilcke in 1762, was an early version of an electrode used to study
static electricity Static electricity is an imbalance of electric charges within or on the surface of a material. The charge remains until it can move away by an electric current or electrical discharge. The word "static" is used to differentiate it from electric ...
.


Anode and cathode in electrochemical cells

Electrodes are an essential part of any battery. The first electrochemical battery was devised by
Alessandro Volta Alessandro Giuseppe Antonio Anastasio Volta (, ; ; 18 February 1745 – 5 March 1827) was an Italian chemist and physicist who was a pioneer of electricity and Power (physics), power, and is credited as the inventor of the electric battery a ...
and was aptly named the
Voltaic cell A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous oxidation–reduction reactions. An example of a g ...
. This battery consisted of a stack of
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
and
zinc Zinc is a chemical element; it has symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodic tabl ...
electrodes separated by
brine Brine (or briny water) is a high-concentration solution of salt (typically sodium chloride or calcium chloride) in water. In diverse contexts, ''brine'' may refer to the salt solutions ranging from about 3.5% (a typical concentration of seawat ...
-soaked paper disks. Due to fluctuation in the voltage provided by the voltaic cell, it was not very practical. The first practical battery was invented in 1839 and named the
Daniell cell The Daniell cell is a type of electrochemical cell invented in 1836 by John Frederic Daniell, a British chemist and meteorologist, and consists of a copper pot filled with a copper (II) sulfate solution, in which is immersed an unglazed earthenw ...
after
John Frederic Daniell John Frederic Daniell (12 March 1790 – 13 March 1845) was an England, English chemist and physicist. Biography Daniell was born in London. In 1831 he became the first professor of chemistry at the newly founded King's College London; and in ...
. It still made use of the zinc–copper electrode combination. Since then, many more batteries have been developed using various materials. The basis of all these is still using two electrodes,
anode An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
s and
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional curren ...
s.


Anode

'Anode' was coined by
William Whewell William Whewell ( ; 24 May 17946 March 1866) was an English polymath. He was Master of Trinity College, Cambridge. In his time as a student there, he achieved distinction in both poetry and mathematics. The breadth of Whewell's endeavours is ...
at
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English chemist and physicist who contributed to the study of electrochemistry and electromagnetism. His main discoveries include the principles underlying electromagnetic inducti ...
's request, derived from the
Greek Greek may refer to: Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group *Greek language, a branch of the Indo-European language family **Proto-Greek language, the assumed last common ancestor of all kno ...
words ἄνο (ano), 'upwards' and ὁδός (hodós), 'a way'. The anode is the electrode through which the conventional current enters from the electrical circuit of an
electrochemical cell An electrochemical cell is a device that either generates electrical energy from chemical reactions in a so called galvanic cell, galvanic or voltaic cell, or induces chemical reactions (electrolysis) by applying external electrical energy in an ...
(battery) into the non-
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
lic cell. The
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s then flow to the other side of the battery.
Benjamin Franklin Benjamin Franklin (April 17, 1790) was an American polymath: a writer, scientist, inventor, statesman, diplomat, printer, publisher and Political philosophy, political philosopher.#britannica, Encyclopædia Britannica, Wood, 2021 Among the m ...
surmised that the electrical flow moved from positive to negative. The electrons flow away from the anode and the conventional current towards it. From both can be concluded that the electric potential of the anode is negative. The electron entering the anode comes from the
oxidation Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
reaction that takes place next to it.


Cathode

The cathode is in many ways the opposite of the anode. The name (also coined by Whewell) comes from the Greek words κάτω (kato), 'downwards' and ὁδός (hodós), 'a way'. It is the positive electrode, meaning the electrons flow from the electrical circuit through the cathode into the non-metallic part of the electrochemical cell. At the cathode, the reduction reaction takes place with the electrons arriving from the wire connected to the cathode and are absorbed by the
oxidizing agent An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ''electron donor''). In ot ...
.


Primary cell

A primary cell is a battery designed to be used once and then discarded. This is due to the electrochemical reactions taking place at the electrodes in the cell not being reversible. An example of a primary cell is the discardable
alkaline battery An alkaline battery (IEC code: L) is a type of primary battery where the electrolyte (most commonly potassium hydroxide) has a pH value above 7. Typically, these batteries derive energy from the reaction between zinc metal and manganese diox ...
commonly used in flashlights. Consisting of a zinc anode and a manganese oxide cathode in which ZnO is formed. The half-reactions are: : Zn(s) + 2OH( aq) → ZnO(s) + H2O(l) + 2e \qquad \qquad 'E''0oxidation = −1.28 V: 2MnO2(s) + H2O(l) + 2e → Mn2O3(s) + 2OH(aq)\qquad 'E''0reduction = +0.15 V Overall reaction: : Zn(s) + 2MnO2(s) ZnO(s) + Mn2O3(s)\qquad \qquad 'E''0total = +1.43 VThe ZnO is prone to clumping and will give less efficient discharge if recharged again. It is possible to recharge these batteries but is due to safety concerns advised against by the manufacturer. Other primary cells include zinc–carbon, zinc–chloride, and lithium iron disulfide.


Secondary cell

Contrary to the primary cell a secondary cell can be recharged. The first was the
lead–acid battery The lead–acid battery is a type of rechargeable battery first invented in 1859 by French physicist Gaston Planté. It was the first type of rechargeable battery to be invented. Compared to modern rechargeable batteries, lead–acid batteries ha ...
, invented in 1859 by French physicist Gaston Planté. This type of battery is still the most widely used in automobiles, among others. The cathode consists of lead dioxide (PbO2) and the anode of solid lead. Other commonly used
rechargeable batteries A rechargeable battery, storage battery, or secondary cell (formally a type of energy accumulator), is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or prima ...
are nickel–cadmium, nickel–metal hydride, and
Lithium-ion A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible Intercalation (chemistry), intercalation of Li+ ions into electronically Electrical conductor, conducting solids to store energy. Li-ion batteries are c ...
. The last of which will be explained more thoroughly in this article due to its importance.


Marcus's theory of electron transfer

Marcus theory is a theory originally developed by Nobel laureate Rudolph A. Marcus and explains the rate at which an electron can move from one chemical species to another, for this article this can be seen as 'jumping' from the electrode to a species in the solvent or vice versa. We can represent the problem as calculating the transfer rate for the transfer of an electron from donor to an acceptor : D + A → D+ + A The potential energy of the system is a function of the translational, rotational, and vibrational coordinates of the reacting species and the molecules of the surrounding medium, collectively called the reaction coordinates. The abscissa the figure to the right represents these. From the classical electron transfer theory, the expression of the
reaction rate constant In chemical kinetics, a reaction rate constant or reaction rate coefficient () is a proportionality constant which quantifies the rate and direction of a chemical reaction by relating it with the concentration of reactants. For a reaction between ...
(probability of reaction) can be calculated, if a non-adiabatic process and parabolic potential energy are assumed, by finding the point of intersection (). One important thing to note, and was noted by Marcus when he came up with the theory, the electron transfer must abide by the law of conservation of energy and the Frank-Condon principle. Doing this and then rearranging this leads to the expression of the free energy activation () in terms of the overall free energy of the reaction (). \Delta G^ = \frac (\Delta G^ + \lambda)^ In which the \lambda is the reorganisation energy. Filling this result in the classically derived
Arrhenius equation In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 188 ...
k = A\, \exp\left(\frac\right), leads to k = A\, \exp\left
right Rights are law, legal, social, or ethics, ethical principles of freedom or Entitlement (fair division), entitlement; that is, rights are the fundamental normative rules about what is allowed of people or owed to people according to some legal sy ...
, with ''A'' being the pre-exponential factor, which is usually experimentally determined, although a semi-classical derivation provides more information as is explained below. This classically derived result qualitatively reproduced observations of a maximum electron transfer rate under the conditions . For a more extensive mathematical treatment one could read the paper by Newton. An interpretation of this result and what a closer look at the physical meaning of the \lambda one can read the paper by Marcus. The situation at hand can be more accurately described by using the displaced harmonic oscillator model, in this model
quantum tunneling In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
is allowed. This is needed in order to explain why even at near-zero
absolute temperature Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion. Thermodynamic temperature is typically expres ...
there are still electron transfers, in contradiction with the classical theory. Without going into too much detail on how the derivation is done, it rests on using
Fermi's golden rule In quantum physics, Fermi's golden rule is a formula that describes the transition rate (the probability of a transition per unit time) from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a ...
from time-dependent
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
with the full
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
of the system. It is possible to look at the overlap in the wavefunctions of both the reactants and the products (the right and the left side of the chemical reaction) and therefore when their energies are the same and allow for electron transfer. As touched on before this must happen because only then conservation of energy is abided by. Skipping over a few mathematical steps the probability of electron transfer can be calculated (albeit quite difficult) using the following formula w_= \frac\int_^dt\, e^ , with J being the electronic coupling constant describing the interaction between the two states (reactants and products) and g(t) being the line shape function. Taking the classical limit of this expression, meaning , and making some substitution an expression is obtained very similar to the classically derived formula, as expected. w_ = \frac \sqrt\exp\left frac \right/math> The main difference is now the pre-exponential factor has now been described by more physical parameters instead of the experimental factor . One is once again revered to the sources as listed below for a more in-depth and rigorous mathematical derivation and interpretation.


Efficiency

The physical properties of electrodes are mainly determined by the material of the electrode and the topology of the electrode. The properties required depend on the application and therefore there are many kinds of electrodes in circulation. The defining property for a material to be used as an electrode is that it be
conductive In physics and electrical engineering, a conductor is an object or type of material that allows the flow of Electric charge, charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow ...
. Any conducting material such as metals,
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s,
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
or conductive
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s can therefore be used as an electrode. Often electrodes consist of a combination of materials, each with a specific task. Typical constituents are the active materials which serve as the particles which oxidate or reduct, conductive agents which improve the conductivity of the electrode and binders which are used to contain the active particles within the electrode. The efficiency of electrochemical cells is judged by a number of properties, important quantities are the self-discharge time, the discharge voltage and the cycle performance. The physical properties of the electrodes play an important role in determining these quantities. Important properties of the electrodes are: the
electrical resistivity Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
, the
specific heat capacity In thermodynamics, the specific heat capacity (symbol ) of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat ...
(''c''p), the
electrode potential An electrode is an electrical conductor used to make contact with a nonmetallic part of a Electronic circuit, circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can c ...
and the
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
. Of course, for technological applications, the cost of the material is also an important factor. The values of these properties at room temperature (''T'' = 293 K) for some commonly used materials are listed in the table below.


Surface effects

The surface topology of the electrode plays an important role in determining the efficiency of an electrode. The efficiency of the electrode can be reduced due to
contact resistance Electrical contact resistance (ECR, or simply contact resistance) is resistance to the flow of electric current caused by incomplete contact of the surfaces through which the current is flowing, and by films or oxide layers on the contacting sur ...
. To create an efficient electrode it is therefore important to design it such that it minimizes the contact resistance.


Manufacturing

The production of electrodes for Li-ion batteries is done in various steps as follows: # The various constituents of the electrode are mixed into a solvent to produce an 'electrode slurry'. This mixture is designed such that it improves the performance of the electrodes. Common components of this mixture are: #* The active electrode particles. #* A binder used to contain the active electrode particles. #* A conductive agent used to improve the conductivity of the electrode. # The electrode slurry above is coated onto a conductor, which acts as the current collector in the electrochemical cell. Typical current collectors are copper for the cathode and aluminum for the anode. # After the slurry has been applied to the conductor it is dried and then pressed to the required thickness.


Structure of the electrode

For a given selection of constituents of the electrode, the final efficiency is determined by the internal structure of the electrode. The important factors in the internal structure in determining the performance of the electrode are: * Clustering of the active material and the conductive agent. In order for all the components of the slurry to perform their task, they should all be spread out evenly within the electrode. * An even distribution of the conductive agent over the active material. This makes sure that the conductivity of the electrode is optimal. * The adherence of the electrode to the current collectors. The adherence makes sure that the electrode does not dissolve into the electrolyte. * The density of the active material. A balance should be found between the amount of active material, the conductive agent and the binder. Since the active material is the important factor in the electrode, the slurry should be designed such that the density of the active material is as high as possible, without the conductive agent and the binder not functioning properly. These properties can be influenced in the production of the electrodes in a number of manners. The most important step in the manufacturing of the electrodes is creating the electrode slurry. As can be seen above, the important properties of the electrode all have to do with the even distribution of the components of the electrode. Therefore, it is very important that the electrode slurry be as homogeneous as possible. Multiple procedures have been developed to improve this mixing stage and current research is still being done.


Electrodes in lithium-ion batteries

A modern application of electrodes is in
lithium-ion batteries A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. Li-ion batteries are characterized by higher specific energy, energy ...
(Li-ion batteries). A Li-ion battery is a kind of flow battery which can be seen in the image on the right. Furthermore, a Li-ion battery is an example of a secondary cell since it is rechargeable. It can both act as a galvanic or
electrolytic cell An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would otherwise not occur. The external energy source is a voltage applied between the cell's two electrodes; ...
. Li-ion batteries use lithium ions as the solute in the electrolyte which are dissolved in an organic
solvent A solvent (from the Latin language, Latin ''wikt:solvo#Latin, solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a Solution (chemistry), solution. A solvent is usually a liquid but can also be a solid, a gas ...
. Lithium electrodes were first studied by
Gilbert N. Lewis Gilbert Newton Lewis (October 23 or October 25, 1875 – March 23, 1946) was an American physical chemist and a dean of the college of chemistry at University of California, Berkeley. Lewis was best known for his discovery of the covalent bon ...
and Frederick G. Keyes in 1913. In the following century these electrodes were used to create and study the first Li-ion batteries. Li-ion batteries are very popular due to their great performance. Applications include mobile phones and electric cars. Due to their popularity, much research is being done to reduce the cost and increase the safety of Li-ion batteries. An integral part of the Li-ion batteries are their anodes and cathodes, therefore much research is being done into increasing the efficiency, safety and reducing the costs of these electrodes specifically.


Cathodes

In Li-ion batteries, the cathode consists of a intercalated lithium compound (a layered material consisting of layers of molecules composed of lithium and other elements). A common element which makes up part of the molecules in the compound is
cobalt Cobalt is a chemical element; it has Symbol (chemistry), symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. ...
. Another frequently used element is
manganese Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
. The best choice of compound usually depends on the application of the battery. Advantages for cobalt-based compounds over manganese-based compounds are their high specific heat capacity, high
volumetric heat capacity The volumetric heat capacity of a material is the heat capacity of a sample of the substance divided by the volume of the sample. It is the amount of energy that must be added, in the form of heat, to one unit of volume of the material in order ...
, low self-discharge rate, high discharge voltage and high cycle durability. There are however also drawbacks in using cobalt-based compounds such as their high cost and their low
thermostability In materials science and molecular biology, thermostability is the ability of a substance to resist irreversible change in its chemical or physical structure, often by resisting decomposition or polymerization, at a high relative temperature. T ...
. Manganese has similar advantages and a lower cost, however there are some problems associated with using manganese. The main problem is that manganese tends to dissolve into the electrolyte over time. For this reason, cobalt is still the most common element which is used in the lithium compounds. There is much research being done into finding new materials which can be used to create cheaper and longer lasting Li-ion batteries For example, Chinese and American researchers have demonstrated that ultralong single wall
carbon nanotubes A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range (nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''SWC ...
significantly enhance lithium iron phosphate cathodes. By creating a highly efficient conductive network that securely binds lithium iron phosphate particles, adding carbon nanotubes as a conductive additive at a dosage of just 0.5% by weight helps cathodes to achieve a remarkable rate capacity of 161.5 mA⋅h⋅g−1 at 0.5 C and 130.2 mA⋅h⋅g−1 at 5 C, whole maintaining 87.4% capacity retention after 200 cycles at 2 C.


Anodes

The anodes used in mass-produced Li-ion batteries are either carbon based (usually graphite) or made out of spinel lithium titanate (Li4Ti5O12). Graphite anodes have been successfully implemented in many modern commercially available batteries due to its cheap price, longevity and high energy density. However, it presents issues of dendrite growth, with risks of shorting the battery and posing a safety issue. Li4Ti5O12 has the second largest market share of anodes, due to its stability and good rate capability, but with challenges such as low capacity. During the early 2000s, silicon anode research began picking up pace, becoming one of the decade's most promising candidates for future lithium-ion battery anodes. Silicon has one of the highest gravimetric capacities when compared to graphite and Li4Ti5O12 as well as a high volumetric one. Furthermore, Silicon has the advantage of operating under a reasonable open circuit voltage without parasitic lithium reactions. However, silicon anodes have a major issue of volumetric expansion during lithiation of around 360%. This expansion may pulverize the anode, resulting in poor performance. To fix this problem, scientists looked into varying the dimensionality of the Si. Many studies have been developed in Si nanowires, Si tubes as well as Si sheets. As a result, composite hierarchical Si anodes have become the major technology for future applications in lithium-ion batteries. In the early 2020s, technology is reaching commercial levels with factories being built for mass production of anodes in the United States. Furthermore, metallic lithium is another possible candidate for the anode. It boasts a higher specific capacity than silicon, however, does come with the drawback of working with the highly unstable metallic lithium. Similarly to graphite anodes, dendrite formation is another major limitation of metallic lithium, with the solid electrolyte interphase being a major design challenge. In the end, if stabilized, metallic lithium would be able to produce batteries that hold the most charge, while being the lightest. In recent years, researchers have conducted several studies on the use of single wall
carbon nanotubes A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range (nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''SWC ...
(SWCNTs) as conductive additives. These SWCNTs help to preserve electron conduction, ensure stable electrochemical reactions, and maintain uniform volume changes during cycling, effectively reducing anode pulverization.


Mechanical properties

A common failure mechanism of batteries is mechanical shock, which breaks either the electrode or the system's container, leading to poor conductivity and electrolyte leakage. However, the relevance of mechanical properties of electrodes goes beyond the resistance to collisions due to its environment. During standard operation, the incorporation of ions into electrodes leads to a change in volume. This is well exemplified by Si electrodes in lithium-ion batteries expanding around 300% during lithiation. Such change may lead to the deformations in the lattice and, therefore stresses in the material. The origin of stresses may be due to geometric constraints in the electrode or inhomogeneous plating of the ion. This phenomenon is very concerning as it may lead to electrode fracture and performance loss. Thus, mechanical properties are crucial to enable the development of new electrodes for long lasting batteries. A possible strategy for measuring the mechanical behavior of electrodes during operation is by using nanoindentation. The method is able to analyze how the stresses evolve during the electrochemical reactions, being a valuable tool in evaluating possible pathways for coupling mechanical behavior and electrochemistry. More than just affecting the electrode's morphology, stresses are also able to impact electrochemical reactions. While the chemical driving forces are usually higher in magnitude than the mechanical energies, this is not true for Li-ion batteries. A study by Dr. Larché established a direct relation between the applied stress and the chemical potential of the electrode. Though it neglects multiple variables such as the variation of elastic constraints, it subtracts from the total chemical potential the elastic energy induced by the stress. \mu = \mu^\text + k\cdot T\cdot\log (\gamma\cdot x) + \Omega \cdot \sigma In this equation, ''μ'' represents the chemical potential, with ''μ''o being its reference value. ''T'' stands for the temperature and ''k'' the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
. The term ''γ'' inside the logarithm is the activity and ''x'' is the ratio of the ion to the total composition of the electrode. The novel term Ω is the partial molar volume of the ion in the host and ''σ'' corresponds to the mean stress felt by the system. The result of this equation is that diffusion, which is dependent on chemical potential, gets impacted by the added stress and, therefore changes the battery's performance. Furthermore, mechanical stresses may also impact the electrode's solid-electrolyte-interphase layer. The interface which regulates the ion and charge transfer and can be degraded by stress. Thus, more ions in the solution will be consumed to reform it, diminishing the overall efficiency of the system.


Other anodes and cathodes

In a
vacuum tube A vacuum tube, electron tube, thermionic valve (British usage), or tube (North America) is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. It ...
or a
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
having polarity (
diode A diode is a two-Terminal (electronics), terminal electronic component that conducts electric current primarily in One-way traffic, one direction (asymmetric electrical conductance, conductance). It has low (ideally zero) Electrical resistance ...
s,
electrolytic capacitor An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
s) the anode is the positive (+) electrode and the cathode the negative (−). The electrons enter the device through the cathode and exit the device through the anode. Many devices have other electrodes to control operation, e.g., base, gate, control grid. In a three-electrode cell, a counter electrode, also called an auxiliary electrode, is used only to make a connection to the electrolyte so that a current can be applied to the working electrode. The counter electrode is usually made of an inert material, such as a
noble metal A noble metal is ordinarily regarded as a metallic chemical element, element that is generally resistant to corrosion and is usually found in nature in its native element, raw form. Gold, platinum, and the other platinum group metals (ruthenium ...
or
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
, to keep it from dissolving.


Welding electrodes

In
arc welding Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a joining of the metals. It is a type of welding that uses a welding power ...
, an electrode is used to conduct current through a workpiece to fuse two pieces together. Depending upon the process, the electrode is either consumable, in the case of
gas metal arc welding Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) and metal active gas (MAG) is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which hea ...
or
shielded metal arc welding Shielded metal arc welding (SMAW), also known as manual metal arc welding (MMA or MMAW), flux shielded arc welding or informally as stick welding, is a manual arc welding process that uses a consumable electrode covered with a flux to lay the we ...
, or non-consumable, such as in
gas tungsten arc welding Gas tungsten arc welding (GTAW, also known as tungsten inert gas welding or TIG, tungsten argon gas welding or TAG, and heliarc welding when helium is used) is an arc welding process that uses a non-consumable tungsten electrode to produce the ...
. For a direct current system, the weld rod or stick may be a cathode for a filling type weld or an anode for other welding processes. For an alternating current arc welder, the welding electrode would not be considered an anode or cathode.


Alternating current electrodes

For electrical systems which use
alternating current Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in w ...
, the electrodes are the connections from the circuitry to the object to be acted upon by the electric current but are not designated anode or cathode because the direction of flow of the electrons changes periodically, usually many times per second.


Chemically modified electrodes

Chemically modified electrodes are electrodes that have their surfaces chemically modified to change the electrode's physical,
chemical A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combin ...
,
electrochemical Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase (typi ...
,
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
,
electrical Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
, and transportive properties. These electrodes are used for advanced purposes in research and investigation.Durst, R., Baumner, A., Murray, R., Buck, R., & Andrieux, C.,
Chemically modified electrodes: Recommended terminology and definitions (PDF)
", IUPAC, 1997, pp 1317–1323.


Uses

Electrodes are used to provide current through nonmetal objects to alter them in numerous ways and to measure conductivity for numerous purposes. Examples include: * Electrodes for
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
s * Electrodes for medical purposes, such as EEG (for recording brain activity), ECG (recording heart beats), ECT (electrical brain stimulation),
defibrillator Defibrillation is a treatment for life-threatening cardiac arrhythmias, specifically ventricular fibrillation (V-Fib) and non-perfusing ventricular tachycardia (V-Tach). Defibrillation delivers a dose of electric current (often called a ''count ...
(recording and delivering cardiac stimulation) * Electrodes for
electrophysiology Electrophysiology (from ee the Electron#Etymology, etymology of "electron" ; and ) is the branch of physiology that studies the electrical properties of biological cell (biology), cells and tissues. It involves measurements of voltage change ...
techniques in biomedical research * Electrodes for execution by the
electric chair The electric chair is a specialized device used for capital punishment through electrocution. The condemned is strapped to a custom wooden chair and electrocuted via electrodes attached to the head and leg. Alfred P. Southwick, a Buffalo, New Yo ...
* Electrodes for
electroplating Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the redox, reduction of cations of that metal by means of a direct current, direct electric cur ...
* Electrodes for
arc welding Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a joining of the metals. It is a type of welding that uses a welding power ...
* Electrodes for
cathodic protection Cathodic protection (CP; ) is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded " sacrifi ...
* Electrodes for grounding * Electrodes for
chemical analysis Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separa ...
using
electrochemical Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase (typi ...
methods * Nanoelectrodes for high-precision measurements in nanoelectrochemistry * Inert electrodes for
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses Direct current, direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of c ...
(made of
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
) * Membrane electrode assembly * Electrodes for
Taser Taser (stylized in all caps) is a line of handheld conducted energy devices (CED) sold by Axon Enterprise (formerly Taser International). The device fires two small barbed darts intended to puncture the skin and remain attached to the targe ...
electroshock weapon


See also

* Reference electrode * Gas diffusion electrode * Cellulose electrode *
Anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
vs.
Cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
* Electron versus
electron hole In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or crystal structure, atomic lattice. Since in ...
*
Electron microscope An electron microscope is a microscope that uses a beam of electrons as a source of illumination. It uses electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing it ...
*
Tafel equation The Tafel equation is an equation in electrochemical kinetics relating the rate of an Electrochemistry, electrochemical reaction to the overpotential. The Tafel equation was first deduced experimentally and was later shown to have a theoretical ...
*
Hot cathode In vacuum tubes and gas-filled tubes, a hot cathode or thermionic cathode is a cathode electrode which is heated to make it emit electrons due to thermionic emission. This is in contrast to a cold cathode, which does not have a heating element ...
*
Cold cathode A cold cathode is a cathode that is not electrically heated by a Electrical filament, filament.A negatively charged electrode emits electrons or is the positively charged terminal. For more, see field emission. A cathode may be considered "cold" ...
*
Reversible charge injection limit For an electrode in a solution with a particular size and geometry, the reversible charge injection limit is the amount of charge that can move from the electrode to the surroundings without causing a chemical reaction A chemical reaction is a ...


References


Further reading

* * {{Authority control Electricity