
In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the dodecadodecahedron is a
nonconvex uniform polyhedron, indexed as U
36. It is the
rectification
Rectification has the following technical meanings:
Mathematics
* Rectification (geometry), truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points
* Rectifiable curve, in mathematics
* Recti ...
of the
great dodecahedron
In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel penta ...
(and that of its dual, the
small stellated dodecahedron). It was discovered independently by , and .
The edges of this model form 10 central
hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.
Regular hexagon
A ''regular hexagon'' h ...
s, and these, projected onto a
sphere
A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
, become 10
great circle
In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point.
Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geometry ...
s. These 10, along with the great circles from projections of two other polyhedra, form the
31 great circles of the spherical icosahedron
In geometry, the 31 great circles of the spherical icosahedron is an arrangement of 31 great circles in icosahedral symmetry. It was first identified by Buckminster Fuller and is used in construction of geodesic domes.
Construction
The 31 great ...
used in construction of
geodesic dome
A geodesic dome is a hemispherical thin-shell structure (lattice-shell) based on a geodesic polyhedron. The triangular elements of the dome are structurally rigid and distribute the structural stress throughout the structure, making geodesic ...
s.
Wythoff constructions
It has four
Wythoff construction
In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction.
Construction process
...
s between four
Schwarz triangle
In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere ( spherical tiling), possibly overlapping, through reflections in its edges. They were classified in .
These can be defin ...
families: 2 , 5 5/2, 2 , 5 5/3, 2 , 5/2 5/4, 2 , 5/3 5/4, but represent identical results. Similarly it can be given four extended
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mor ...
s: r, r, r, and r or as
Coxeter-Dynkin diagrams: , , , and .
Net
A shape with the same exterior appearance as the dodecadodecahedron can be constructed by folding up these nets:

12 pentagrams and 20
rhombic
Rhombic may refer to:
* Rhombus, a quadrilateral whose four sides all have the same length (often called a diamond)
*Rhombic antenna, a broadband directional antenna most commonly used on shortwave frequencies
* polyhedra formed from rhombuses, suc ...
clusters are necessary. However, this construction replaces the crossing pentagonal faces of the dodecadodecahedron with non-crossing sets of rhombi, so it does not produce the same internal structure.
Related polyhedra
Its
convex hull is the
icosidodecahedron
In geometry, an icosidodecahedron is a polyhedron with twenty (''icosi'') triangular faces and twelve (''dodeca'') pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 ...
. It also shares its
edge arrangement with the
small dodecahemicosahedron (having the pentagrammic faces in common), and with the
great dodecahemicosahedron
In geometry, the great dodecahemicosahedron (or small dodecahemiicosahedron) is a nonconvex uniform polyhedron, indexed as U65. It has 22 faces (12 Pentagon, pentagons and 10 Hexagon, hexagons), 60 edges, and 30 vertices. Its vertex figure is a q ...
(having the pentagonal faces in common).

This polyhedron can be considered a
rectified great dodecahedron
In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel penta ...
. It is center of a truncation sequence between a
small stellated dodecahedron and
great dodecahedron
In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel penta ...
:
The
truncated small stellated dodecahedron looks like a
dodecahedron
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentag ...
on the surface, but it has 24 faces: 12
pentagons from the truncated vertices and 12 overlapping as (truncated pentagrams). The truncation of the dodecadodecahedron itself is not uniform and attempting to make it uniform results in a
degenerate
Degeneracy, degenerate, or degeneration may refer to:
Arts and entertainment
* ''Degenerate'' (album), a 2010 album by the British band Trigger the Bloodshed
* Degenerate art, a term adopted in the 1920s by the Nazi Party in Germany to descr ...
polyhedron (that looks like a
small rhombidodecahedron with polygons filling up the dodecahedral set of holes), but it has a uniform quasitruncation, the
truncated dodecadodecahedron.
It is topologically equivalent to a
quotient space
Quotient space may refer to a quotient set when the sets under consideration are considered as spaces. In particular:
*Quotient space (topology), in case of topological spaces
* Quotient space (linear algebra), in case of vector spaces
*Quotient ...
of the
hyperbolic order-4 pentagonal tiling, by distorting the
pentagram
A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle aro ...
s back into regular
pentagon
In geometry, a pentagon (from the Greek language, Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is ...
s. As such, it is topologically a
regular polyhedron
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equiv ...
of index two:

The colours in the above image correspond to the red pentagrams and yellow pentagons of the dodecadodecahedron at the top of this article.
Medial rhombic triacontahedron
The medial rhombic triacontahedron is a nonconvex
isohedral polyhedron
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
A convex polyhedron is the convex hull of finitely many points, not all on ...
. It is the
dual
Dual or Duals may refer to:
Paired/two things
* Dual (mathematics), a notion of paired concepts that mirror one another
** Dual (category theory), a formalization of mathematical duality
*** see more cases in :Duality theories
* Dual (grammatical ...
of the dodecadodecahedron. It has 30 intersecting
rhombic
Rhombic may refer to:
* Rhombus, a quadrilateral whose four sides all have the same length (often called a diamond)
*Rhombic antenna, a broadband directional antenna most commonly used on shortwave frequencies
* polyhedra formed from rhombuses, suc ...
faces.
It can also be called the small stellated triacontahedron.
Stellation
The ''medial rhombic triacontahedron'' is a
stellation
In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in ''n'' dimensions to form a new figure. Starting with an original figure, the process extends specific el ...
of the
rhombic triacontahedron
In geometry, the rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catal ...
, which is the dual of the icosidodecahedron, the convex hull of the dodecadodecahedron (dual to the original medial rhombic triacontahedron).
Related hyperbolic tiling
It is topologically equivalent to a quotient space of the
hyperbolic order-5 square tiling, by distorting the rhombi into
squares. As such, it is topologically a
regular polyhedron
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equiv ...
of index two:
The Regular Polyhedra (of index two)
David A. Richter
Note that the order-5 square tiling is dual to the order-4 pentagonal tiling, and a quotient space of the order-4 pentagonal tiling is topologically equivalent to the dual of the medial rhombic triacontahedron, the dodecadodecahedron.
See also
* List of uniform polyhedra
References
*
*
*
*
External links
*
*
Uniform polyhedra and duals
{{Nonconvex polyhedron navigator
Uniform polyhedra