Direct Sum Of Graded Vector Spaces
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a graded vector space is a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
that has the extra structure of a ''grading'' or ''gradation'', which is a decomposition of the vector space into a
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
of vector subspaces, generally indexed by the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s. For "pure" vector spaces, the concept has been introduced in
homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
, and it is widely used for
graded algebra In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that . The index set is usually the set of nonnegative integers or the set of integers, ...
s, which are graded vector spaces with additional structures.


Integer gradation

Let \mathbb be the set of non-negative
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s. An \mathbb-graded vector space, often called simply a graded vector space without the prefix \mathbb, is a vector space together with a decomposition into a direct sum of the form : V = \bigoplus_ V_n where each V_n is a vector space. For a given ''n'' the elements of V_n are then called homogeneous elements of degree ''n''. Graded vector spaces are common. For example the set of all
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s in one or several variables forms a graded vector space, where the homogeneous elements of degree ''n'' are exactly the linear combinations of
monomial In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called a power product or primitive monomial, is a product of powers of variables with n ...
s of degree ''n''.


General gradation

The subspaces of a graded vector space need not be indexed by the set of natural numbers, and may be indexed by the elements of any set ''I''. An ''I''-graded vector space ''V'' is a vector space together with a decomposition into a direct sum of subspaces indexed by elements ''i'' of the set ''I'': : V = \bigoplus_ V_i. Therefore, an \mathbb-graded vector space, as defined above, is just an ''I''-graded vector space where the set ''I'' is \mathbb (the set of
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s). The case where ''I'' is the
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
\mathbb/2\mathbb (the elements 0 and 1) is particularly important in
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
. A (\mathbb/2\mathbb)-graded vector space is also known as a supervector space.


Homomorphisms

For general index sets ''I'', a
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
between two ''I''-graded vector spaces is called a graded linear map if it preserves the grading of homogeneous elements. A graded linear map is also called a homomorphism (or morphism) of graded vector spaces, or homogeneous linear map: :f(V_i)\subseteq W_i for all ''i'' in ''I''. For a fixed
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
and a fixed
index set In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set may be ''indexed'' or ''labeled'' by means of the elements of a set , then is an index set. The indexing consists ...
, the graded vector spaces form a
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
whose
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
s are the graded linear maps. When ''I'' is a
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
(such as the natural numbers), then one may more generally define linear maps that are homogeneous of any degree ''i'' in ''I'' by the property :f(V_j)\subseteq W_ for all ''j'' in ''I'', where "+" denotes the monoid operation. If moreover ''I'' satisfies the
cancellation property In mathematics, the notion of cancellativity (or ''cancellability'') is a generalization of the notion of invertibility. An element ''a'' in a magma has the left cancellation property (or is left-cancellative) if for all ''b'' and ''c'' in ''M ...
so that it can be embedded into an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
''A'' that it generates (for instance the integers if ''I'' is the natural numbers), then one may also define linear maps that are homogeneous of degree ''i'' in ''A'' by the same property (but now "+" denotes the
group operation In mathematics, a group is a set with an operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is associative, it has an identity element, and ev ...
in ''A''). Specifically, for ''i'' in ''I'' a linear map will be homogeneous of degree −''i'' if :f(V_)\subseteq W_j for all ''j'' in ''I'', while :f(V_j)=0\, if is not in ''I''. Just as the set of linear maps from a vector space to itself forms an
associative algebra In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
(the algebra of endomorphisms of the vector space), the sets of homogeneous linear maps from a space to itself – either restricting degrees to ''I'' or allowing any degrees in the group ''A'' – form associative
graded algebra In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that . The index set is usually the set of nonnegative integers or the set of integers, ...
s over those index sets.


Operations on graded vector spaces

Some operations on vector spaces can be defined for graded vector spaces as well. Given two ''I''-graded vector spaces ''V'' and ''W'', their direct sum has underlying vector space ''V'' ⊕ ''W'' with gradation :(''V'' ⊕ ''W'')''i'' = ''Vi'' ⊕ ''Wi'' . If ''I'' is a
semigroup In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily th ...
, then the tensor product of two ''I''-graded vector spaces ''V'' and ''W'' is another ''I''-graded vector space, V \otimes W, with gradation : (V \otimes W)_i = \bigoplus_ V_j \otimes W_k.


Hilbert–Poincaré series

Given a \N-graded vector space that is finite-dimensional for every n\in \N, its
Hilbert–Poincaré series In mathematics, and in particular in the field of algebra, a Hilbert–Poincaré series (also known under the name Hilbert series), named after David Hilbert and Henri Poincaré, is an adaptation of the notion of dimension to the context of grade ...
is the
formal power series In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial su ...
:\sum_\dim_K(V_n)\, t^n. From the formulas above, the Hilbert–Poincaré series of a direct sum and of a tensor product of graded vector spaces (finite dimensional in each degree) are respectively the sum and the product of the corresponding Hilbert–Poincaré series.


See also

*
Graded (mathematics) In mathematics, the term "graded" has a number of meanings, mostly related: In abstract algebra, it refers to a family of concepts: * An algebraic structure X is said to be I-graded for an index set I if it has a gradation or grading, i.e. a dec ...
*
Graded algebra In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that . The index set is usually the set of nonnegative integers or the set of integers, ...
* Comodule *
Graded module Grade most commonly refers to: * Grading in education, a measurement of a student's performance by educational assessment (e.g. A, pass, etc.) * A designation for students, classes and curricula indicating the number of the year a student has reac ...
*
Littlewood–Richardson rule In mathematics, the Littlewood–Richardson rule is a combinatorial description of the coefficients that arise when decomposing a product of two Schur functions as a linear combination of other Schur functions. These coefficients are natural number ...


References

* Bourbaki, N. (1974) ''Algebra I'' (Chapters 1-3), , Chapter 2, Section 11; Chapter 3. {{DEFAULTSORT:Graded Vector Space Categories in category theory Vector spaces