HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a differentiable function of one real variable is a function whose
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical
tangent line In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
at each interior point in its domain. A differentiable function is smooth (the function is locally well approximated as a
linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
at each interior point) and does not contain any break, angle, or
cusp A cusp is the most pointed end of a curve. It often refers to cusp (anatomy), a pointed structure on a tooth. Cusp or CUSP may also refer to: Mathematics * Cusp (singularity), a singular point of a curve * Cusp catastrophe, a branch of bifu ...
. If is an interior point in the domain of a function , then is said to be ''differentiable at'' if the derivative f'(x_0) exists. In other words, the graph of has a non-vertical tangent line at the point . is said to be differentiable on if it is differentiable at every point of . is said to be ''continuously differentiable'' if its derivative is also a continuous function over the domain of the function f. Generally speaking, is said to be of class if its first k derivatives f^(x), f^(x), \ldots, f^(x) exist and are continuous over the domain of the function f. For a multivariable function, as shown here, the differentiability of it is something more complex than the existence of the partial derivatives of it.


Differentiability of real functions of one variable

A function f:U\to\mathbb, defined on an open set U\subset\mathbb, is said to be ''differentiable'' at a\in U if the derivative :f'(a)=\lim_\frac=\lim_\frac exists. This implies that the function is continuous at . This function is said to be ''differentiable'' on if it is differentiable at every point of . In this case, the derivative of is thus a function from into \mathbb R. A continuous function is not necessarily differentiable, but a differentiable function is necessarily continuous (at every point where it is differentiable) as is shown below (in the section Differentiability and continuity). A function is said to be ''continuously differentiable'' if its derivative is also a continuous function; there exist functions that are differentiable but not continuously differentiable (an example is given in the section Differentiability classes).


Semi-differentiability

The above definition can be extended to define the derivative at boundary points. The derivative of a function f:A\to \mathbb defined on a closed subset A\subsetneq \mathbb of the real numbers, evaluated at a boundary point c, can be defined as the following one-sided limit, where the argument x approaches c such that it is always within A: :f'(c)=\lim_\frac. For x to remain within A, which is a subset of the reals, it follows that this limit will be defined as either :f'(c)=\lim_\frac \quad \text \quad f'(c)=\lim_\frac.


Differentiability and continuity

If is differentiable at a point , then must also be continuous at . In particular, any differentiable function must be continuous at every point in its domain. ''The converse does not hold'': a continuous function need not be differentiable. For example, a function with a bend,
cusp A cusp is the most pointed end of a curve. It often refers to cusp (anatomy), a pointed structure on a tooth. Cusp or CUSP may also refer to: Mathematics * Cusp (singularity), a singular point of a curve * Cusp catastrophe, a branch of bifu ...
, or vertical tangent may be continuous, but fails to be differentiable at the location of the anomaly. Most functions that occur in practice have derivatives at all points or at almost every point. However, a result of Stefan Banach states that the set of functions that have a derivative at some point is a meagre set in the space of all continuous functions.. Cited by Informally, this means that differentiable functions are very atypical among continuous functions. The first known example of a function that is continuous everywhere but differentiable nowhere is the
Weierstrass function In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function (mathematics), function that is continuous function, continuous everywhere but Differentiable function, differentiab ...
.


Differentiability classes

A function f is said to be if the derivative f^(x) exists and is itself a continuous function. Although the derivative of a differentiable function never has a jump discontinuity, it is possible for the derivative to have an essential discontinuity. For example, the function f(x) \;=\; \begin x^2 \sin(1/x) & \textx \neq 0 \\ 0 & \text x = 0\end is differentiable at 0, since f'(0) = \lim_ \left(\frac\right) = 0 exists. However, for x \neq 0, differentiation rules imply f'(x) = 2x\sin(1/x) - \cos(1/x)\;, which has no limit as x \to 0. Thus, this example shows the existence of a function that is differentiable but not continuously differentiable (i.e., the derivative is not a continuous function). Nevertheless, Darboux's theorem implies that the derivative of any function satisfies the conclusion of the intermediate value theorem. Similarly to how
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s are said to be of continuously differentiable functions are sometimes said to be of . A function is of if the first and
second derivative In calculus, the second derivative, or the second-order derivative, of a function is the derivative of the derivative of . Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the secon ...
of the function both exist and are continuous. More generally, a function is said to be of if the first k derivatives f^(x), f^(x), \ldots, f^(x) all exist and are continuous. If derivatives f^ exist for all positive integers n, the function is smooth or equivalently, of


Differentiability in higher dimensions

A function of several real variables is said to be differentiable at a point if there exists a
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
such that :\lim_ \frac = 0. If a function is differentiable at , then all of the
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). P ...
s exist at , and the linear map is given by the Jacobian matrix, an ''n'' × ''m'' matrix in this case. A similar formulation of the higher-dimensional derivative is provided by the fundamental increment lemma found in single-variable calculus. If all the partial derivatives of a function exist in a
neighborhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
of a point and are continuous at the point , then the function is differentiable at that point . However, the existence of the partial derivatives (or even of all the
directional derivative In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. The directional derivative of a multivariable differentiable (scalar) function along a given vect ...
s) does not guarantee that a function is differentiable at a point. For example, the function defined by :f(x,y) = \beginx & \texty \ne x^2 \\ 0 & \texty = x^2\end is not differentiable at , but all of the partial derivatives and directional derivatives exist at this point. For a continuous example, the function :f(x,y) = \beginy^3/(x^2+y^2) & \text(x,y) \ne (0,0) \\ 0 & \text(x,y) = (0,0)\end is not differentiable at , but again all of the partial derivatives and directional derivatives exist.


Differentiability in complex analysis

In
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. So, a function f:\mathbb\to\mathbb is said to be differentiable at x=a when :f'(a)=\lim_\frac. Although this definition looks similar to the differentiability of single-variable real functions, it is however a more restrictive condition. A function f:\mathbb\to\mathbb, that is complex-differentiable at a point x=a is automatically differentiable at that point, when viewed as a function f:\mathbb^2\to\mathbb^2. This is because the complex-differentiability implies that :\lim_\frac=0. However, a function f:\mathbb\to\mathbb can be differentiable as a multi-variable function, while not being complex-differentiable. For example, f(z)=\frac is differentiable at every point, viewed as the 2-variable real function f(x,y)=x, but it is not complex-differentiable at any point because the limit \lim_\frac gives different values for different approaches to 0. Any function that is complex-differentiable in a neighborhood of a point is called holomorphic at that point. Such a function is necessarily infinitely differentiable, and in fact analytic.


Differentiable functions on manifolds

If ''M'' is a
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
, a real or complex-valued function ''f'' on ''M'' is said to be differentiable at a point ''p'' if it is differentiable with respect to some (or any) coordinate chart defined around ''p''. If ''M'' and ''N'' are differentiable manifolds, a function ''f'': ''M'' → ''N'' is said to be differentiable at a point ''p'' if it is differentiable with respect to some (or any) coordinate charts defined around ''p'' and ''f''(''p'').


See also

* Generalizations of the derivative * Semi-differentiability * Differentiable programming


References

{{Differentiable computing Multivariable calculus Smooth functions