HOME

TheInfoList



OR:

In
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, a branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, for any
object Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ai ...
a in any category \mathcal where the product a\times a exists, there exists the diagonal morphism :\delta_a : a \rightarrow a \times a satisfying :\pi_k \circ \delta_a = \operatorname_a for k \in \, where \pi_k is the canonical projection morphism to the k-th component. The existence of this
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
is a consequence of the
universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fro ...
that characterizes the product (
up to Two Mathematical object, mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' wi ...
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
). The restriction to binary products here is for ease of notation; diagonal morphisms exist similarly for arbitrary products. The
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
of a diagonal morphism in the category of sets, as a
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\ti ...
, is a
relation Relation or relations may refer to: General uses *International relations, the study of interconnection of politics, economics, and law on a global level *Interpersonal relationship, association or acquaintance between two or more people *Public ...
on the
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
, namely equality. For
concrete categories In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects of t ...
, the diagonal morphism can be simply described by its action on elements x of the object a. Namely, \delta_a(x) = \langle x,x \rangle, the
ordered pair In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In con ...
formed from x. The reason for the name is that the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
of such a diagonal morphism is diagonal (whenever it makes sense), for example the image of the diagonal morphism \mathbb \rightarrow \mathbb^2 on the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
is given by the line that is the graph of the equation y=x. The diagonal morphism into the infinite product X^\infty may provide an
injection Injection or injected may refer to: Science and technology * Injective function, a mathematical function mapping distinct arguments to distinct values * Injection (medicine), insertion of liquid into the body with a syringe * Injection, in broadca ...
into the
space of sequences In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural n ...
valued in X; each element maps to the constant
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
at that element. However, most notions of sequence spaces have convergence restrictions that the image of the diagonal map will fail to satisfy.


See also

* Diagonal functor *
Diagonal embedding In algebraic geometry, given a morphism of schemes p: X \to S, the diagonal morphism :\delta: X \to X \times_S X is a morphism determined by the universal property of the fiber product X \times_S X of ''p'' and ''p'' applied to the identity 1_X : X ...


References

Morphisms {{cattheory-stub