DNA Unwinding Element
   HOME

TheInfoList



OR:

A DNA unwinding element (DUE or DNAUE) is the initiation site for the opening of the
double helix In molecular biology, the term double helix refers to the structure formed by base pair, double-stranded molecules of nucleic acids such as DNA. The double Helix, helical structure of a nucleic acid complex arises as a consequence of its Nuclei ...
structure of the DNA at the
origin of replication The origin of replication (also called the replication origin) is a particular sequence in a genome at which replication is initiated. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semi ...
for
DNA synthesis DNA synthesis is the natural or artificial creation of deoxyribonucleic acid (DNA) molecules. DNA is a macromolecule made up of nucleotide units, which are linked by covalent bonds and hydrogen bonds, in a repeating structure. DNA synthesis occu ...
. It is A-T rich and denatures easily due to its low helical stability, which allows the single-strand region to be recognized by
origin recognition complex In molecular biology, origin recognition complex (ORC) is a multi-subunit DNA binding complex (6 subunits) that binds in all eukaryotes and archaea in an Adenosine triphosphate, ATP-dependent manner to origins of replication. The subunits of this ...
. DUEs are found in both
prokaryotic A prokaryote (; less commonly spelled procaryote) is a single-celled organism whose cell lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Ancient Greek (), meaning 'before', and (), meaning 'nut' ...
and
eukaryotic The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
organisms, but were first discovered in yeast and bacteria origins, by Huang Kowalski. The DNA unwinding allows for access of replication machinery to the newly single strands. In eukaryotes, DUEs are the binding site for DNA-unwinding element binding (DUE-B) proteins required for replication initiation. In prokaryotes, DUEs are found in the form of tandem
consensus sequence In molecular biology and bioinformatics, the consensus sequence (or canonical sequence) is the calculated sequence of most frequent residues, either nucleotide or amino acid, found at each position in a sequence alignment. It represents the result ...
s flanking the 5' end of DnaA binding domain. The act of unwinding at these A-T rich elements occurs even in absence of any origin binding proteins due to negative supercoiling forces, making it an energetically favourable action. DUEs are typically found spanning 30-100 bp of replication origins.


Function

The specific unwinding of the DUE allows for initiation complex assembly at the site of replication on single-stranded DNA, as discovered by Huang Kowalski. The DNA helicase and associated enzymes are now able to bind to the unwound region, creating a
replication fork In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms, acting as the most essential part of biological inheritanc ...
start. The unwinding of this duplex strand region is associated with a low free energy requirement, due to helical instability caused by specific base-stacking interactions, in combination with counteracting supercoiling. Negative supercoiling allows the DNA to be stable upon melting, driven by reduction of torsional stress. Found in the replication origins of both bacteria and yeast, as well as present in some mammalian ones. Found to be between 30 and 100 bp long.


Prokaryotes

In prokaryotes, most of the time DNA replication is occurring from one single replication origin on one single strand of DNA sequence. Whether this genome is linear or circularized, bacteria have own machinery necessary for replication to occur.


Process

In bacteria, the protein DnaA is the replication initiator. It gets loaded onto oriC at a DnaA box sequence where it binds and assembles filaments to open duplex and recruit
DnaB helicase DnaB helicase is an enzyme in bacteria which opens the replication fork during DNA replication. Although the mechanism by which DnaB both couples ATP hydrolysis to translocation along DNA and denatures the duplex is unknown, a change in the quat ...
with the help of
DnaC dnaC is a prokaryotic loading factor found in ''Escherichia coli'' that complexes with the C-terminus of helicase DnaB helicase, dnaB during the initial stages of prokaryotic DNA replication, loading dnaB onto DNA and inhibiting it from unwinding ...
. DnaA is highly conserved and has two DNA binding domains. Just upstream to this DnaA box, is three tandem 13-mer sequences. These tandem sequences, labelled L, M, R from 5' to 3' are the bacterial DUEs. Two out of three of these A-T rich regions (M and R) become unwound upon binding of DnaA to DnaA box, via close proximity to unwinding duplex. The final 13-mer sequence L, farthest from this DnaA box eventually gets unwound upon DnaB helicase encircling it. This forms a replication bubble for DNA replication to then proceed. Archaea use a simpler homolog of the eukaryotic
origin recognition complex In molecular biology, origin recognition complex (ORC) is a multi-subunit DNA binding complex (6 subunits) that binds in all eukaryotes and archaea in an Adenosine triphosphate, ATP-dependent manner to origins of replication. The subunits of this ...
to find the origin of replication, at sequences termed the origin recognition box (ORB).


Favourability

Unwinding of these three DUEs is a necessary step for DNA replication to initiate. The distant pull from duplex melting at the DnaA box sequence is what induces further melting at the M and R DUE sites. The more distant L site is then unwound by DnaB binding. Unwinding of these 13-mer sites is independent of oriC-binding proteins. It is the generation of negative supercoiling that causes the unwinding. The rates of DNA unwinding in the three ''E. coli'' DUEs were experimentally compared through nuclear resonance spectroscopy. In physiological conditions, the opening efficiency of each of the A-T rich sequences differed from one another. Largely due to the different distantly surrounding sequences. Additionally, melting of AT/TA base pairs were found to be much faster than that of GC/CG pairs (15-240s−1 vs. ~20s−1). This supports the idea that A-T sequences are evolutionarily favoured in DUE elements due to their ease of unwinding.


Consensus Sequence

The three 13-mer sequences identified as DUEs in ''E. coli'', are well-conserved at the origin of replication of all documented enteric bacteria. A general consensus sequence was made via comparison of conserved bacteria to form an 11 base sequence, . ''E. coli'' contains 9 bases of the 11 base consensus sequence in its oriC, within the 13-mer sequences. These sequences are found exclusively at the single origin of replication; not anywhere else within the genome sequence.


Eukaryotes

Eukaryotic replication mechanisms work in relatively similar ways to that of prokaryotes, but is under more finely-tuned regulation. There is a need to ensure that each DNA molecule is replicated only once and that this is occurring in the proper location at the proper time. Operates in response to extracellular signals that coordinate initiation of division, differently from tissue to tissue. External signals trigger replication in S phase via production of
cyclin Cyclins are proteins that control the progression of a cell through the cell cycle by activating cyclin-dependent kinases (CDK). Etymology Cyclins were originally discovered by R. Timothy Hunt in 1982 while studying the cell cycle of sea urch ...
s which activate
cyclin-dependent kinase Cyclin-dependent kinases (CDKs) are a predominant group of serine/threonine protein kinases involved in the regulation of the cell cycle and its progression, ensuring the integrity and functionality of cellular machinery. These regulatory enzym ...
s (CDK) to form complexes. DNA replication in eukaryotes initiates upon
origin recognition complex In molecular biology, origin recognition complex (ORC) is a multi-subunit DNA binding complex (6 subunits) that binds in all eukaryotes and archaea in an Adenosine triphosphate, ATP-dependent manner to origins of replication. The subunits of this ...
(ORC) binding to the origin. This occurs at G1 cell phase serving to drive the cell cycle forward into
S phase S phase (Synthesis phase) is the phase of the cell cycle in which DNA is replicated, occurring between G1 phase and G2 phase. Since accurate duplication of the genome is critical to successful cell division, the processes that occur during S ...
. This binding allows for further factor binding to create a pre-replicative complex (pre-RC). Pre-RC triggered to initiate when cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) bind to it. Initiation complexes then allow for recruitment of MCM helicase activator Cdc45 and subsequent unwinding of duplex at origin. Replication in eukaryotes is initiated at multiple sites on the sequence, forming multiple
replication fork In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms, acting as the most essential part of biological inheritanc ...
s simultaneously. This efficiency is required with the large genomes that they need to replicate. In eukaryotes,
nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone, histone proteins and resembles thread wrapped around a bobbin, spool. The nucleosome ...
structures can complicate replication initiation. They can block access of DUE-B's to the DUE, thus suppressing transcription initiation. Can impede on rate. The linear nature of eukaryotic DNA, vs prokaryotic circular DNA, though, is easier to unwind its duplex once has been properly unwound from nucleosome. Activity of DUE can be modulated by transcription factors like ABF1.


Yeast

A common yeast model system that well-represents eukaryotic replication is ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
''. It possesses
autonomously replicating sequence An autonomously replicating sequence (ARS) contains the origin of replication in the yeast genome. The ARS of ''S. cerevisiae'' is a minimal 125 bp, and contains four regions (A, B1, B2, and B3), named in order of their effect on plasmid stability. ...
s (ARSs) that are transformed and maintained well in a plasmid. Some of these ARSs are seen to act as replication origins. These ARSs are composed of three domains A, B, and C. The A domain is where the ARS consensu s sequence resides, coined an ACS. The B domain contains the DUE. Lastly, the C domain is necessary for facilitating protein-protein interactions. ARSs are found distributed across 16 chromosomes, repeated every 30–40 kb. Between species, these ARS sequences are variable, but their A, B, and C domains are well conserved. Any alterations in the DUE (domain B) causes lower overall function of the ARS as a whole in replication initiation. This was found via studies using imino exchange and
NMR spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic f ...
.


Mammals

DUEs found in some mammalian replication origins to date. In general, very little mammalian origins of replication have been well-analyzed, so difficult to determine how prevalent the DUEs are, in their defined replication origins. Human cells still have very little detailing of their origins. It is known that replication initiates in large initiation zone areas, associated with known proteins like the c-myc and β-globin gene. Ones with DUEs thought to act in nearly same way as yeast cells. DUE in origin of plasmids in mammalian cells,
SV40 SV40 is an abbreviation for simian vacuolating virus 40 or simian virus 40, a polyomavirus that is found in both monkeys and humans. Like other polyomaviruses, SV40 is a DNA virus that is found to cause tumors in humans and animals, but most ofte ...
, found to be associated with a T-ag hexamer, that introduces opposite supercoiling to increase favourability of strand unwinding. Mammals with DUEs have shown evidence of structure-forming abilities that provide single-stranded stability of unwound DNA. These include cruciforms, intramolecular triplexes, and more.


DUE-binding proteins

DNA unwinding element proteins (DUE-Bs) are found in eukaryotes. They act to initiate strand separation by binding to DUE. DUE-B sequence homologs found among a variety of animal species- fish, amphibians, and rodents. DUE-B's have disordered C-terminal domains that bind to the DUE by recognition of this C-terminus. No other sequence specificity involved in this interaction. Confirmed by inducing mutations along length of DUE-B sequence, but in all cases dimerization abilities remaining intact. Upon binding DNA, C-terminus becomes ordered, imparting a greater stability against
protease A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalysis, catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products ...
degradation. DUE-B's are 209 residues in total, 58 of which are disordered until bound to DUE. DUE-B's hydrolyze ATP In order to function. Also possess similar sequence to
aminoacyl-tRNA synthetase An aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase, is an enzyme that attaches the appropriate amino acid onto its corresponding tRNA. It does so by catalyzing the transesterification of a specific cognate amino acid or its pre ...
, and were previously classified a such. DUE-Bs form
homodimer In biochemistry, a protein dimer is a macromolecular complex or protein multimer, multimer formed by two protein monomers, or single proteins, which are usually Non-covalent interaction, non-covalently bound. Many macromolecules, such as proteins ...
s that create an extended
beta-sheet The beta sheet (β-sheet, also β-pleated sheet) is a common structural motif, motif of the regular protein secondary structure. Beta sheets consist of beta strands (β-strands) connected laterally by at least two or three backbone chain, backbon ...
secondary structure extending across it. Two of these homodimers come together to form the overall asymmetric DUE-B structure. In formation of the pre-RC, Cdc45 is localized to the DUE for activity via interaction with a DUE-B. Allowing for duplex unwinding and replication initiation. In humans, DUE-B's are 60 amino acids longer than its yeast
ortholog Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a speci ...
counterparts. Both localized mainly in the nucleus. DUE-B levels are in consistent quantity, regardless of cell cycle. In
S phase S phase (Synthesis phase) is the phase of the cell cycle in which DNA is replicated, occurring between G1 phase and G2 phase. Since accurate duplication of the genome is critical to successful cell division, the processes that occur during S ...
though, DUE-Bs can be temporarily phosphorylated to prevent premature replication. DUE-B activity is covalently controlled. The assembly of these DUE-Bs at the DUE regions is dependent on local kinase and phosphatase activity. DUE-B's can also be down-regulated by siRNAs and have been implicated in extended G1 stages.


Mutation Implications

Mutations that impair the unwinding at DUE sites directly impede DNA replication activity. This can be a result of deletions/changes in the DUE region, the addition of reactive reagents, or the addition of specific
nuclease In biochemistry, a nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds that link nucleotides together to form nucleic acids. Nucleases variously affect single and ...
. DUE sites are relatively insensitive to
point mutation A point mutation is a genetic mutation where a single nucleotide base is changed, inserted or deleted from a DNA or RNA sequence of an organism's genome. Point mutations have a variety of effects on the downstream protein product—consequences ...
s though, maintaining their activity in when altering bases in protein binding sites. In many cases, DUE activity can be partially regained by increasing temperature. Can be regained by the re-addition of DUE site as well. If there is a severe enough mutation to DUE causing it to no longer be bound to DUE-B, Cdc45 cannot associate and will not bind to c-myc transcription factor. This can be recovered in disease-related (ATTCT)(n) length expansions of the DUE sequence. If DUE activity regained in excess, could cause dysregulated origin formation and cell cycle progression. In eukaryotes, when DUE-B's are knocked out, the cell will not go into S phase of its cycle, where DNA replication occurs. Increased
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
will result. But, activity can be rescued by re-addition of the DUE-B's, even from a different species. This is because DUE-B's are homologous between species. For example, if DUE-B in
Xenopus ''Xenopus'' () (Gk., ξενος, ''xenos'' = strange, πους, ''pous'' = foot, commonly known as the clawed frog) is a genus of highly aquatic frogs native to sub-Saharan Africa. Twenty species are currently described with ...
egg are mutated, no DNA replication will occur, but can be saved by addition of
HeLa HeLa () is an immortalized cell line used in scientific research. It is the oldest human cell line and one of the most commonly used. HeLa cells are durable and prolific, allowing for extensive applications in scientific study. The line is ...
DUE-B's to regain full functionality.


References

{{DEFAULTSORT:Dna Unwinding Element DNA Enzymes