HOME

TheInfoList



OR:

Physical cosmology is a branch of
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
and allows study of fundamental questions about its origin, structure,
evolution Evolution is the change in the heritable Phenotypic trait, characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, re ...
, and ultimate fate.For an overview, see Cosmology as a
science Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
originated with the Copernican principle, which implies that
celestial bodies An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
obey identical
physical law Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) ...
s to those on Earth, and
Newtonian mechanics Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body r ...
, which first allowed those physical laws to be understood. Physical cosmology, as it is now understood, began in 1915 with the development of
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
's general theory of relativity, followed by major observational discoveries in the 1920s: first,
Edwin Hubble Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology. Hubble proved that many objects previously ...
discovered that the universe contains a huge number of external galaxies beyond the
Milky Way The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
; then, work by Vesto Slipher and others showed that the universe is expanding. These advances made it possible to speculate about the origin of the universe, and allowed the establishment of the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
theory, by Georges Lemaître, as the leading cosmological model. A few researchers still advocate a handful of alternative cosmologies; however, most cosmologists agree that the Big Bang theory best explains the observations. Dramatic advances in observational cosmology since the 1990s, including the
cosmic microwave background The cosmic microwave background (CMB, CMBR), or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dar ...
, distant
supernovae A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original ob ...
and galaxy
redshift survey In astronomy, a redshift survey is a astronomical surveys, survey of a section of the sky to measure the redshift of astronomical objects: usually galaxies, but sometimes other objects such as galaxy clusters or quasars. Using Hubble's law, the ...
s, have led to the development of a standard model of cosmology. This model requires the universe to contain large amounts of
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
and
dark energy In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure format ...
whose nature is currently not well understood, but the model gives detailed predictions that are in excellent agreement with many diverse observations. Cosmology draws heavily on the work of many disparate areas of research in theoretical and
applied physics Applied physics is the application of physics to solve scientific or engineering problems. It is usually considered a bridge or a connection between physics and engineering. "Applied" is distinguished from "pure" by a subtle combination of fac ...
. Areas relevant to cosmology include
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
experiments and
theory A theory is a systematic and rational form of abstract thinking about a phenomenon, or the conclusions derived from such thinking. It involves contemplative and logical reasoning, often supported by processes such as observation, experimentation, ...
, theoretical and observational
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the ...
, general relativity,
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, and
plasma physics Plasma () is a state of matter characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars (including th ...
.


Subject history

Modern cosmology developed along tandem tracks of theory and observation. In 1916, Albert Einstein published his theory of
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, which provided a unified description of gravity as a geometric property of space and time. At the time, Einstein believed in a static universe, but found that his original formulation of the theory did not permit it. This is because masses distributed throughout the universe gravitationally attract, and move toward each other over time. However, he realized that his equations permitted the introduction of a constant term which could counteract the attractive force of gravity on the cosmic scale. Einstein published his first paper on relativistic cosmology in 1917, in which he added this '' cosmological constant'' to his field equations in order to force them to model a static universe. The Einstein model describes a static universe; space is finite and unbounded (analogous to the surface of a sphere, which has a finite area but no edges). However, this so-called Einstein model is unstable to small perturbations—it will eventually start to expand or contract. It was later realized that Einstein's model was just one of a larger set of possibilities, all of which were consistent with general relativity and the cosmological principle. The cosmological solutions of general relativity were found by Alexander Friedmann in the early 1920s. His equations describe the Friedmann–Lemaître–Robertson–Walker universe, which may expand or contract, and whose geometry may be open, flat, or closed. In the 1910s, Vesto Slipher (and later Carl Wilhelm Wirtz) interpreted the red shift of spiral nebulae as a
Doppler shift The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described t ...
that indicated they were receding from Earth. However, it is difficult to determine the distance to astronomical objects. One way is to compare the physical size of an object to its angular size, but a physical size must be assumed in order to do this. Another method is to measure the
brightness Brightness is an attribute of visual perception in which a source appears to be radiating/reflecting light. In other words, brightness is the perception dictated by the luminance of a visual target. The perception is not linear to luminance, and ...
of an object and assume an intrinsic
luminosity Luminosity is an absolute measure of radiated electromagnetic radiation, electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. In astronomy, luminosity is the total amount of electroma ...
, from which the distance may be determined using the inverse-square law. Due to the difficulty of using these methods, they did not realize that the nebulae were actually galaxies outside our own
Milky Way The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
, nor did they speculate about the cosmological implications. In 1927, the Belgian
Roman Catholic The Catholic Church (), also known as the Roman Catholic Church, is the largest Christian church, with 1.27 to 1.41 billion baptized Catholics worldwide as of 2025. It is among the world's oldest and largest international institut ...
priest A priest is a religious leader authorized to perform the sacred rituals of a religion, especially as a mediatory agent between humans and one or more deity, deities. They also have the authority or power to administer religious rites; in parti ...
Georges Lemaître independently derived the Friedmann–Lemaître–Robertson–Walker equations and proposed, on the basis of the recession of spiral nebulae, that the universe began with the "explosion" of a "primeval
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
"—which was later called the Big Bang. In 1929,
Edwin Hubble Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology. Hubble proved that many objects previously ...
provided an observational basis for Lemaître's theory. Hubble showed that the spiral nebulae were galaxies by determining their distances using measurements of the brightness of
Cepheid variable A Cepheid variable () is a type of variable star that pulsates radially, varying in both diameter and temperature. It changes in brightness, with a well-defined stable period (typically 1–100 days) and amplitude. Cepheids are important cosmi ...
stars. He discovered a relationship between the redshift of a galaxy and its distance. He interpreted this as evidence that the galaxies are receding from Earth in every direction at speeds proportional to their distance from Earth. This fact is now known as Hubble's law, though the numerical factor Hubble found relating recessional velocity and distance was off by a factor of ten, due to not knowing about the types of Cepheid variables. Given the cosmological principle, Hubble's law suggested that the universe was expanding. Two primary explanations were proposed for the expansion. One was Lemaître's Big Bang theory, advocated and developed by George Gamow. The other explanation was
Fred Hoyle Sir Fred Hoyle (24 June 1915 â€“ 20 August 2001) was an English astronomer who formulated the theory of stellar nucleosynthesis and was one of the authors of the influential B2FH paper, B2FH paper. He also held controversial stances on oth ...
's steady state model in which new matter is created as the galaxies move away from each other. In this model, the universe is roughly the same at any point in time. For a number of years, support for these theories was evenly divided. However, the observational evidence began to support the idea that the universe evolved from a hot dense state. The discovery of the cosmic microwave background in 1965 lent strong support to the Big Bang model, and since the precise measurements of the cosmic microwave background by the Cosmic Background Explorer in the early 1990s, few cosmologists have seriously proposed other theories of the origin and evolution of the cosmos. One consequence of this is that in standard general relativity, the universe began with a singularity, as demonstrated by
Roger Penrose Sir Roger Penrose (born 8 August 1931) is an English mathematician, mathematical physicist, Philosophy of science, philosopher of science and Nobel Prize in Physics, Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics i ...
and
Stephen Hawking Stephen William Hawking (8January 194214March 2018) was an English theoretical physics, theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between ...
in the 1960s. An alternative view to extend the Big Bang model, suggesting the universe had no beginning or singularity and the age of the universe is infinite, has been presented. In September 2023, astrophysicists questioned the overall current view of the
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
, in the form of the Standard Model of Cosmology, based on the latest
James Webb Space Telescope The James Webb Space Telescope (JWST) is a space telescope designed to conduct infrared astronomy. As the largest telescope in space, it is equipped with high-resolution and high-sensitivity instruments, allowing it to view objects too old, Lis ...
studies.


Energy of the cosmos

The lightest
chemical elements A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in i ...
, primarily
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
and
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, were created during the Big Bang through the process of
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
. In a sequence of
stellar nucleosynthesis In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
reactions, smaller atomic nuclei are then combined into larger atomic nuclei, ultimately forming stable iron group elements such as
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
and
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
, which have the highest nuclear binding energies. The net process results in a ''later energy release'', meaning subsequent to the Big Bang. Such reactions of nuclear particles can lead to ''sudden energy releases'' from cataclysmic variable stars such as novae. Gravitational collapse of matter into
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s also powers the most energetic processes, generally seen in the nuclear regions of galaxies, forming ''
quasar A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
s'' and '' active galaxies''. Cosmologists cannot explain all cosmic phenomena exactly, such as those related to the accelerating expansion of the universe, using conventional forms of energy. Instead, cosmologists propose a new form of energy called
dark energy In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure format ...
that permeates all space. One hypothesis is that dark energy is just the vacuum energy, a component of empty space that is associated with the
virtual particle A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emer ...
s that exist due to the
uncertainty principle The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
. There is no clear way to define the total energy in the universe using the most widely accepted theory of gravity, general relativity. Therefore, it remains controversial whether the total energy is conserved in an expanding universe. For instance, each
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
that travels through intergalactic space loses energy due to the
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and e ...
effect. This energy is not transferred to any other system, so seems to be permanently lost. On the other hand, some cosmologists insist that energy is conserved in some sense; this follows the law of
conservation of energy The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
. Different forms of energy may dominate the cosmos— relativistic particles which are referred to as
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes: * ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
, or non-relativistic particles referred to as matter. Relativistic particles are particles whose
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
is zero or negligible compared to their
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
, and so move at the speed of light or very close to it; non-relativistic particles have much higher rest mass than their energy and so move much slower than the speed of light. As the universe expands, both matter and radiation become diluted. However, the energy densities of radiation and matter dilute at different rates. As a particular volume expands, mass-energy density is changed only by the increase in volume, but the energy density of radiation is changed both by the increase in volume and by the increase in the
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of the photons that make it up. Thus the energy of radiation becomes a smaller part of the universe's total energy than that of matter as it expands. The very early universe is said to have been 'radiation dominated' and radiation controlled the deceleration of expansion. Later, as the average energy per photon becomes roughly 10 eV and lower, matter dictates the rate of deceleration and the universe is said to be 'matter dominated'. The intermediate case is not treated well analytically. As the expansion of the universe continues, matter dilutes even further and the cosmological constant becomes dominant, leading to an acceleration in the universe's expansion.


History of the universe

The history of the universe is a central issue in cosmology. The history of the universe is divided into different periods called epochs, according to the dominant forces and processes in each period. The standard cosmological model is known as the
Lambda-CDM model The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components: # a cosmological constant, denoted by lambda (Λ), associated with dark energy; # the postulated cold dark mat ...
.


Equations of motion

Within the standard cosmological model, the equations of motion governing the universe as a whole are derived from general relativity with a small, positive cosmological constant. The solution is an expanding universe; due to this expansion, the radiation and matter in the universe cool and become diluted. At first, the expansion is slowed down by
gravitation In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
attracting the radiation and matter in the universe. However, as these become diluted, the cosmological constant becomes more dominant and the expansion of the universe starts to accelerate rather than decelerate. In our universe this happened billions of years ago.


Particle physics in cosmology

During the earliest moments of the universe, the average energy density was very high, making knowledge of
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
critical to understanding this environment. Hence,
scattering In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiat ...
processes and decay of unstable
elementary particles In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a con ...
are important for cosmological models of this period. As a rule of thumb, a scattering or a decay process is cosmologically important in a certain epoch if the time scale describing that process is smaller than, or comparable to, the time scale of the expansion of the universe. The time scale that describes the expansion of the universe is 1/H with H being the Hubble parameter, which varies with time. The expansion timescale 1/H is roughly equal to the age of the universe at each point in time.


Timeline of the Big Bang

Observations suggest that the universe began around 13.8 billion years ago. Since then, the evolution of the universe has passed through three phases. The very early universe, which is still poorly understood, was the split second in which the universe was so hot that particles had energies higher than those currently accessible in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s on Earth. Therefore, while the basic features of this epoch have been worked out in the Big Bang theory, the details are largely based on educated guesses. Following this, in the early universe, the evolution of the universe proceeded according to known
high energy physics Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the stu ...
. This is when the first protons, electrons and neutrons formed, then nuclei and finally atoms. With the formation of neutral hydrogen, the
cosmic microwave background The cosmic microwave background (CMB, CMBR), or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dar ...
was emitted. Finally, the epoch of structure formation began, when matter started to aggregate into the first
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s and
quasar A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
s, and ultimately galaxies, clusters of galaxies and superclusters formed. The future of the universe is not yet firmly known, but according to the ΛCDM model it will continue expanding forever.


Areas of study

Below, some of the most active areas of inquiry in cosmology are described, in roughly chronological order. This does not include all of the Big Bang cosmology, which is presented in '' Timeline of the Big Bang.''


Very early universe

The early, hot universe appears to be well explained by the Big Bang from roughly 10−33 seconds onwards, but there are several problems. One is that there is no compelling reason, using current particle physics, for the universe to be flat, homogeneous, and
isotropic In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also ...
''(see the cosmological principle)''. Moreover, grand unified theories of particle physics suggest that there should be magnetic monopoles in the universe, which have not been found. These problems are resolved by a brief period of cosmic inflation, which drives the universe to flatness, smooths out anisotropies and inhomogeneities to the observed level, and exponentially dilutes the monopoles. The physical model behind cosmic inflation is extremely simple, but it has not yet been confirmed by particle physics, and there are difficult problems reconciling inflation and
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
. Some cosmologists think that
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
and brane cosmology will provide an alternative to inflation. Another major problem in cosmology is what caused the universe to contain far more matter than
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding subatomic particle, particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or go ...
. Cosmologists can observationally deduce that the universe is not split into regions of matter and antimatter. If it were, there would be
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s and
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
s produced as a result of
annihilation In particle physics, annihilation is the process that occurs when a subatomic particle collides with its respective antiparticle to produce other particles, such as an electron colliding with a positron to produce two photons. The total energy a ...
, but this is not observed. Therefore, some process in the early universe must have created a small excess of matter over antimatter, and this (currently not understood) process is called '' baryogenesis''. Three required conditions for baryogenesis were derived by Andrei Sakharov in 1967, and requires a violation of the particle physics
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
, called
CP-symmetry In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (Charge (physics), charge conjugation symmetry) and Parity (physics), P-symmetry (Parity (physics), parity sym ...
, between matter and antimatter. However, particle accelerators measure too small a violation of CP-symmetry to account for the baryon asymmetry. Cosmologists and particle physicists look for additional violations of the CP-symmetry in the early universe that might account for the baryon asymmetry. Both the problems of baryogenesis and cosmic inflation are very closely related to particle physics, and their resolution might come from high energy theory and
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs whe ...
, rather than through observations of the universe.


Big Bang Theory

Big Bang nucleosynthesis is the theory of the formation of the elements in the early universe. It finished when the universe was about three minutes old and its
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
dropped below that at which
nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
could occur. Big Bang nucleosynthesis had a brief period during which it could operate, so only the very lightest elements were produced. Starting from hydrogen ions (
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s), it principally produced
deuterium Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
,
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consi ...
, and
lithium Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
. Other elements were produced in only trace abundances. The basic theory of nucleosynthesis was developed in 1948 by George Gamow, Ralph Asher Alpher, and Robert Herman. It was used for many years as a probe of physics at the time of the Big Bang, as the theory of Big Bang nucleosynthesis connects the abundances of primordial light elements with the features of the early universe. Specifically, it can be used to test the
equivalence principle The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same t ...
, to probe
dark matter In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
, and test
neutrino A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
physics. Some cosmologists have proposed that Big Bang nucleosynthesis suggests there is a fourth "sterile" species of neutrino.


Standard model of Big Bang cosmology

The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parametrization of the Big Bang cosmological model in which the universe contains a cosmological constant, denoted by
Lambda Lambda (; uppercase , lowercase ; , ''lám(b)da'') is the eleventh letter of the Greek alphabet, representing the voiced alveolar lateral approximant . In the system of Greek numerals, lambda has a value of 30. Lambda is derived from the Phoen ...
( Greek Λ), associated with dark energy, and cold dark matter (abbreviated CDM). It is frequently referred to as the standard model of Big Bang cosmology.


Cosmic microwave background

The cosmic microwave background is radiation left over from decoupling after the epoch of recombination when neutral atoms first formed. At this point, radiation produced in the Big Bang stopped Thomson scattering from charged ions. The radiation, first observed in 1965 by Arno Penzias and Robert Woodrow Wilson, has a perfect thermal black-body spectrum. It has a temperature of 2.7
kelvin The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
s today and is isotropic to one part in 105. Cosmological perturbation theory, which describes the evolution of slight inhomogeneities in the early universe, has allowed cosmologists to precisely calculate the angular
power spectrum In signal processing, the power spectrum S_(f) of a continuous time signal x(t) describes the distribution of Power (physics), power into frequency components f composing that signal. According to Fourier analysis, any physical signal can be ...
of the radiation, and it has been measured by the recent satellite experiments ( COBE and WMAP) and many ground and balloon-based experiments (such as
Degree Angular Scale Interferometer The Degree Angular Scale Interferometer (DASI) was a telescope installed at the U.S. National Science Foundation's Amundsen–Scott South Pole Station in Antarctica. It was a 13-element interferometer operating between 26 and 36 GHz ( Ka b ...
,
Cosmic Background Imager The Cosmic Background Imager (or CBI) was a 13-element astronomical interferometer perched at an elevation of 5,080 metres (16,700 feet) at Llano de Chajnantor Observatory in the Chilean Andes. It started operations in 1999 to study the cosmi ...
, and
Boomerang A boomerang () is a thrown tool typically constructed with airfoil sections and designed to spin about an axis perpendicular to the direction of its flight, designed to return to the thrower. The origin of the word is from Australian Aborigin ...
). One of the goals of these efforts is to measure the basic parameters of the Lambda-CDM model with increasing accuracy, as well as to test the predictions of the Big Bang model and look for new physics. The results of measurements made by WMAP, for example, have placed limits on the neutrino masses. Newer experiments, such as QUIET and the Atacama Cosmology Telescope, are trying to measure the polarization of the cosmic microwave background. These measurements are expected to provide further confirmation of the theory as well as information about cosmic inflation, and the so-called secondary anisotropies, such as the Sunyaev-Zel'dovich effect and Sachs-Wolfe effect, which are caused by interaction between galaxies and clusters with the cosmic microwave background. On 17 March 2014, astronomers of the BICEP2 Collaboration announced the apparent detection of ''B''-mode polarization of the CMB, considered to be evidence of primordial gravitational waves that are predicted by the theory of
inflation In economics, inflation is an increase in the average price of goods and services in terms of money. This increase is measured using a price index, typically a consumer price index (CPI). When the general price level rises, each unit of curre ...
to occur during the earliest phase of the Big Bang. However, later that year the Planck collaboration provided a more accurate measurement of
cosmic dust Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can ...
, concluding that the B-mode signal from dust is the same strength as that reported from BICEP2. On 30 January 2015, a joint analysis of BICEP2 and Planck data was published and the
European Space Agency The European Space Agency (ESA) is a 23-member International organization, international organization devoted to space exploration. With its headquarters in Paris and a staff of around 2,547 people globally as of 2023, ESA was founded in 1975 ...
announced that the signal can be entirely attributed to interstellar dust in the Milky Way.


Formation and evolution of large-scale structure

Understanding the formation and evolution of the largest and earliest structures (i.e., quasars, galaxies, clusters and superclusters) is one of the largest efforts in cosmology. Cosmologists study a model of hierarchical structure formation in which structures form from the bottom up, with smaller objects forming first, while the largest objects, such as superclusters, are still assembling. One way to study structure in the universe is to survey the visible galaxies, in order to construct a three-dimensional picture of the galaxies in the universe and measure the matter
power spectrum In signal processing, the power spectrum S_(f) of a continuous time signal x(t) describes the distribution of Power (physics), power into frequency components f composing that signal. According to Fourier analysis, any physical signal can be ...
. This is the approach of the ''
Sloan Digital Sky Survey The Sloan Digital Sky Survey or SDSS is a major multi-spectral imaging and spectroscopic redshift survey using a dedicated 2.5-m wide-angle optical telescope at Apache Point Observatory in New Mexico, United States. The project began in 2000 a ...
'' and the 2dF Galaxy Redshift Survey. Another tool for understanding structure formation is simulations, which cosmologists use to study the gravitational aggregation of matter in the universe, as it clusters into filaments, superclusters and
voids Void may refer to: Science, engineering, and technology * Void (astronomy), the spaces between galaxy filaments that contain no galaxies * Void (composites), a pore that remains unoccupied in a composite material * Void, synonym for vacuum, ...
. Most simulations contain only non-baryonic cold dark matter, which should suffice to understand the universe on the largest scales, as there is much more dark matter in the universe than visible, baryonic matter. More advanced simulations are starting to include baryons and study the formation of individual galaxies. Cosmologists study these simulations to see if they agree with the galaxy surveys, and to understand any discrepancy. Other, complementary observations to measure the distribution of matter in the distant universe and to probe reionization include: * The Lyman-alpha forest, which allows cosmologists to measure the distribution of neutral atomic hydrogen gas in the early universe, by measuring the absorption of light from distant quasars by the gas. * The 21-centimeter absorption line of neutral atomic hydrogen also provides a sensitive test of cosmology. * Weak lensing, the distortion of a distant image by gravitational lensing due to dark matter. These will help cosmologists settle the question of when and how structure formed in the universe.


Dark matter

Evidence from
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (also known as primordial nucleosynthesis, and abbreviated as BBN) is a model for the production of light nuclei, deuterium, 3He, 4He, 7Li, between 0.01s and 200s in the lifetime of the universe ...
, the
cosmic microwave background The cosmic microwave background (CMB, CMBR), or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dar ...
, structure formation, and galaxy rotation curves suggests that about 23% of the mass of the universe consists of non-baryonic dark matter, whereas only 4% consists of visible,
baryonic matter In particle physics, a baryon is a type of composite subatomic particle that contains an odd number of valence quarks, conventionally three. Protons and neutrons are examples of baryons; because baryons are composed of quarks, they belong to ...
. The gravitational effects of dark matter are well understood, as it behaves like a cold, non-radiative fluid that forms haloes around galaxies. Dark matter has never been detected in the laboratory, and the particle physics nature of dark matter remains completely unknown. Without observational constraints, there are a number of candidates, such as a stable supersymmetric particle, a weakly interacting massive particle, a gravitationally-interacting massive particle, an axion, and a massive compact halo object. Alternatives to the dark matter hypothesis include a modification of gravity at small accelerations ( MOND) or an effect from brane cosmology. TeVeS is a version of MOND that can explain gravitational lensing.


Dark energy

If the universe is flat, there must be an additional component making up 73% (in addition to the 23% dark matter and 4% baryons) of the energy density of the universe. This is called dark energy. In order not to interfere with Big Bang nucleosynthesis and the cosmic microwave background, it must not cluster in haloes like baryons and dark matter. There is strong observational evidence for dark energy, as the total energy density of the universe is known through constraints on the flatness of the universe, but the amount of clustering matter is tightly measured, and is much less than this. The case for dark energy was strengthened in 1999, when measurements demonstrated that the expansion of the universe has begun to gradually accelerate. Apart from its density and its clustering properties, nothing is known about dark energy. ''
Quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
'' predicts a cosmological constant (CC) much like dark energy, but 120
orders of magnitude In a ratio scale based on powers of ten, the order of magnitude is a measure of the nearness of two figures. Two numbers are "within an order of magnitude" of each other if their ratio is between 1/10 and 10. In other words, the two numbers are wi ...
larger than that observed. Steven Weinberg and a number of string theorists ''(see string landscape)'' have invoked the 'weak anthropic principle': i.e. the reason that physicists observe a universe with such a small cosmological constant is that no physicists (or any life) could exist in a universe with a larger cosmological constant. Many cosmologists find this an unsatisfying explanation: perhaps because while the weak anthropic principle is self-evident (given that living observers exist, there must be at least one universe with a cosmological constant (CC) which allows for life to exist) it does not attempt to explain the context of that universe. For example, the weak anthropic principle alone does not distinguish between: * Only one universe will ever exist and there is some underlying principle that constrains the CC to the value we observe. * Only one universe will ever exist and although there is no underlying principle fixing the CC, we got lucky. * Lots of universes exist (simultaneously or serially) with a range of CC values, and of course ours is one of the life-supporting ones. Other possible explanations for dark energy include quintessence or a modification of gravity on the largest scales. The effect on cosmology of the dark energy that these models describe is given by the dark energy's
equation of state In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most mo ...
, which varies depending upon the theory. The nature of dark energy is one of the most challenging problems in cosmology. A better understanding of dark energy is likely to solve the problem of the ultimate fate of the universe. In the current cosmological epoch, the accelerated expansion due to dark energy is preventing structures larger than superclusters from forming. It is not known whether the acceleration will continue indefinitely, perhaps even increasing until a big rip, or whether it will eventually reverse, lead to a Big Freeze, or follow some other scenario.


Gravitational waves

Gravitational wave Gravitational waves are oscillations of the gravitational field that Wave propagation, travel through space at the speed of light; they are generated by the relative motion of gravity, gravitating masses. They were proposed by Oliver Heaviside i ...
s are ripples in the
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
of
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
that propagate as
wave In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from List of types of equilibrium, equilibrium) of one or more quantities. ''Periodic waves'' oscillate repeatedly about an equilibrium ...
s at the speed of light, generated in certain gravitational interactions that propagate outward from their source. Gravitational-wave astronomy is an emerging branch of observational astronomy which aims to use gravitational waves to collect observational data about sources of detectable gravitational waves such as binary star systems composed of
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
s,
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
s, and
black hole A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s; and events such as
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
e, and the formation of the early universe shortly after the Big Bang. In 2016, the
LIGO The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Prior to LIG ...
Scientific Collaboration and
Virgo Virgo may refer to: Arts and entertainment * Virgo (film), a 1970 Egyptian film * Virgo (character), several Marvel Comics characters * Virgo Asmita, a character in the manga ''Saint Seiya: The Lost Canvas'' * ''Virgo'' (album), by Virgo Four, ...
Collaboration teams announced that they had made the first observation of gravitational waves, originating from a pair of merging black holes using the Advanced LIGO detectors. On 15 June 2016, a second detection of gravitational waves from coalescing black holes was announced. Besides LIGO, many other gravitational-wave observatories (detectors) are under construction.


Other areas of inquiry

Cosmologists also study: * Whether primordial black holes were formed in our universe, and what happened to them. * Detection of cosmic rays with energies above the GZK cutoff, and whether it signals a failure of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Ele ...
at high energies. * The
equivalence principle The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same t ...
, whether or not Einstein's general theory of relativity is the correct theory of
gravitation In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
, and if the fundamental laws of physics are the same everywhere in the universe. *Biophysical cosmology: a type of physical cosmology that studies and understands
life Life, also known as biota, refers to matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes. It is defined descriptively by the capacity for homeostasis, Structure#Biological, organisation, met ...
as part or an inherent part of physical cosmology. It stresses that life is inherent to the universe and therefore frequent.


See also

* Accretion * Hubble's law * Illustris project * List of cosmologists * Physical ontology * Quantum cosmology * String cosmology * Universal Rotation Curve


References


Further reading


Popular

* * * * * * *


Textbooks

* Introductory cosmology and general relativity without the full tensor apparatus, deferred until the last part of the book. * Modern introduction to cosmology covering the homogeneous and inhomogeneous universe as well as inflation and the CMB. * An introductory text, released slightly before the WMAP results. * * * For undergraduates; mathematically gentle with a strong historical focus. * An introductory astronomy text. * The classic reference for researchers. * Cosmology without general relativity. * An introduction to cosmology with a thorough discussion of
inflation In economics, inflation is an increase in the average price of goods and services in terms of money. This increase is measured using a price index, typically a consumer price index (CPI). When the general price level rises, each unit of curre ...
. * * Discusses the formation of large-scale structures in detail. * An introduction including more on general relativity and quantum field theory than most. * Strong historical focus. * The classic work on large-scale structure and correlation functions. * * A standard reference for the mathematical formalism. *


External links


From groups


Cambridge Cosmology
– from Cambridge University (public home page)

– from the NASA WMAP group
Center for Cosmological Physics
University of Chicago The University of Chicago (UChicago, Chicago, or UChi) is a Private university, private research university in Chicago, Illinois, United States. Its main campus is in the Hyde Park, Chicago, Hyde Park neighborhood on Chicago's South Side, Chic ...
, Chicago, Illinois
Origins, Nova Online
– Provided by '' PBS''


From individuals

* Gale, George,
Cosmology: Methodological Debates in the 1930s and 1940s
, ''The Stanford Encyclopedia of Philosophy'', Edward N. Zalta (ed.) * Madore, Barry F., "
Level 5
: A Knowledgebase for Extragalactic Astronomy and Cosmology''". Caltech and Carnegie. Pasadena, California. * Tyler, Pat, and Newman, Phil, "
Beyond Einstein
'". Laboratory for High Energy Astrophysics (LHEA) NASA Goddard Space Flight Center. * Wright, Ned. "
Cosmology tutorial and FAQ
'". Division of Astronomy & Astrophysics, UCLA. * * {{DEFAULTSORT:Physical Cosmology Philosophy of physics Philosophy of time Astronomical sub-disciplines Astrophysics