HOME

TheInfoList



OR:

In
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, the coproduct, or categorical sum, is a construction which includes as examples the
disjoint union In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
of sets and of topological spaces, the
free product In mathematics, specifically group theory, the free product is an operation that takes two groups ''G'' and ''H'' and constructs a new The result contains both ''G'' and ''H'' as subgroups, is generated by the elements of these subgroups, an ...
of groups, and the
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
of modules and
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products within a given category.


Definition

Let C be a
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
and let X_1 and X_2 be objects of C. An object is called the coproduct of X_1 and X_2, written X_1 \sqcup X_2, or X_1 \oplus X_2, or sometimes simply X_1 + X_2, if there exist morphisms i_1 : X_1 \to X_1 \sqcup X_2 and i_2 : X_2 \to X_1 \sqcup X_2 that satisfies the following
universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fro ...
: for any object Y and any morphisms f_1 : X_1 \to Y and f_2 : X_2 \to Y, there exists a unique morphism f : X_1 \sqcup X_2 \to Y such that f_1 = f \circ i_1 and f_2 = f \circ i_2. That is, the following diagram commutes: The unique arrow f making this diagram commute may be denoted f_1 \sqcup f_2, f_1 \oplus f_2, f_1 + f_2, or \left _1, f_2\right The morphisms i_1 and i_2 are called , although they need not be injections or even monic. The definition of a coproduct can be extended to an arbitrary
family Family (from ) is a Social group, group of people related either by consanguinity (by recognized birth) or Affinity (law), affinity (by marriage or other relationship). It forms the basis for social order. Ideally, families offer predictabili ...
of objects indexed by a set J. The coproduct of the family \left\ is an object X together with a collection of
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
s i_j : X_j \to X such that, for any object Y and any collection of morphisms f_j : X_j \to Y there exists a unique morphism f : X \to Y such that f_j = f \circ i_j. That is, the following diagram commutes for each j \in J: The coproduct X of the family \left\ is often denoted \coprod_X_j or \bigoplus_ X_j. Sometimes the morphism f : X \to Y may be denoted \coprod_ f_j to indicate its dependence on the individual f_js.


Examples

The coproduct in the
category of sets In the mathematical field of category theory, the category of sets, denoted by Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the functions from ''A'' to ''B'', and the composition of mor ...
is simply the
disjoint union In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
with the maps ''ij'' being the inclusion maps. Unlike direct products, coproducts in other categories are not all obviously based on the notion for sets, because unions don't behave well with respect to preserving operations (e.g. the union of two groups need not be a group), and so coproducts in different categories can be dramatically different from each other. For example, the coproduct in the
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories The ...
, called the
free product In mathematics, specifically group theory, the free product is an operation that takes two groups ''G'' and ''H'' and constructs a new The result contains both ''G'' and ''H'' as subgroups, is generated by the elements of these subgroups, an ...
, is quite complicated. On the other hand, in the
category of abelian groups In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab. Properties The zero object o ...
(and equally for vector spaces), the coproduct, called the
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
, consists of the elements of the direct product which have only finitely many nonzero terms. (It therefore coincides exactly with the direct product in the case of finitely many factors.) Given a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
''R'', the coproduct in the category of commutative ''R''-algebras is the
tensor product In mathematics, the tensor product V \otimes W of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V\times W \rightarrow V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of ...
. In the category of (noncommutative) ''R''-algebras, the coproduct is a quotient of the tensor algebra (see '' Free product of associative algebras''). In the case of
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s, coproducts are disjoint unions with their disjoint union topologies. That is, it is a disjoint union of the underlying sets, and the
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
s are sets ''open in each of the spaces'', in a rather evident sense. In the category of pointed spaces, fundamental in
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
, the coproduct is the
wedge sum In topology, the wedge sum is a "one-point union" of a family of topological spaces. Specifically, if ''X'' and ''Y'' are pointed spaces (i.e. topological spaces with distinguished basepoints x_0 and y_0) the wedge sum of ''X'' and ''Y'' is the ...
(which amounts to joining a collection of spaces with base points at a common base point). The concept of disjoint union secretly underlies the above examples: the direct sum of abelian groups is the group generated by the "almost" disjoint union (disjoint union of all nonzero elements, together with a common zero), similarly for vector spaces: the space spanned by the "almost" disjoint union; the free product for groups is generated by the set of all letters from a similar "almost disjoint" union where no two elements from different sets are allowed to commute. This pattern holds for any variety in the sense of universal algebra. The coproduct in the category of
Banach spaces In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
with short maps is the sum, which cannot be so easily conceptualized as an "almost disjoint" sum, but does have a
unit ball Unit may refer to: General measurement * Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law **International System of Units (SI), modern form of the metric system **English units, histo ...
almost-disjointly generated by the unit ball is the cofactors. The coproduct of a
poset category In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; ...
is the join operation.


Discussion

The coproduct construction given above is actually a special case of a
colimit In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions s ...
in category theory. The coproduct in a category C can be defined as the colimit of any
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
from a
discrete category In mathematics, in the field of category theory, a discrete category is a category whose only morphisms are the identity morphisms: :hom''C''(''X'', ''X'') = {id''X''} for all objects ''X'' :hom''C''(''X'', ''Y'') = ∅ for all objects ''X'' ≠ '' ...
J into C. Not every family \lbrace X_j\rbrace will have a coproduct in general, but if it does, then the coproduct is unique in a strong sense: if i_j:X_j\rightarrow X and k_j:X_j\rightarrow Y are two coproducts of the family \lbrace X_j\rbrace, then (by the definition of coproducts) there exists a unique
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
f:X\rightarrow Y such that f \circ i_j = k_j for each j \in J. As with any
universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fro ...
, the coproduct can be understood as a universal morphism. Let \Delta : C\rightarrow C\times C be the
diagonal functor In category theory, a branch of mathematics, the diagonal functor \mathcal \rightarrow \mathcal \times \mathcal is given by \Delta(a) = \langle a,a \rangle, which maps objects as well as morphisms. This functor can be employed to give a succinct a ...
which assigns to each object X the
ordered pair In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unord ...
\left(X, X\right) and to each morphism f : X\rightarrow Y the pair \left(f, f\right). Then the coproduct X + Y in C is given by a universal morphism to the functor \Delta from the object \left(X, Y\right) in C\times C. The coproduct indexed by the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
(that is, an ''empty coproduct'') is the same as an
initial object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element) ...
in C. If J is a set such that all coproducts for families indexed with J exist, then it is possible to choose the products in a compatible fashion so that the coproduct turns into a functor C^J\rightarrow C. The coproduct of the family \lbrace X_j\rbrace is then often denoted by : \coprod_ X_j and the maps i_j are known as the natural injections. Letting \operatorname_C\left(U, V\right) denote the set of all morphisms from U to V in C (that is, a
hom-set In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Alt ...
in C), we have a natural isomorphism : \operatorname_C\left(\coprod_X_j,Y\right) \cong \prod_\operatorname_C(X_j,Y) given by the
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
which maps every
tuple In mathematics, a tuple is a finite sequence or ''ordered list'' of numbers or, more generally, mathematical objects, which are called the ''elements'' of the tuple. An -tuple is a tuple of elements, where is a non-negative integer. There is o ...
of morphisms : (f_j)_ \in \prod_\operatorname(X_j,Y) (a product in Set, the
category of sets In the mathematical field of category theory, the category of sets, denoted by Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the functions from ''A'' to ''B'', and the composition of mor ...
, which is the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
, so it is a tuple of morphisms) to the morphism : \coprod_ f_j \in \operatorname\left(\coprod_X_j,Y\right). That this map is a
surjection In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
follows from the commutativity of the diagram: any morphism f is the coproduct of the tuple : (f\circ i_j)_. That it is an injection follows from the universal construction which stipulates the uniqueness of such maps. The naturality of the isomorphism is also a consequence of the diagram. Thus the contravariant hom-functor changes coproducts into products. Stated another way, the hom-functor, viewed as a functor from the
opposite category In category theory, a branch of mathematics, the opposite category or dual category C^ of a given Category (mathematics), category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal ...
C^\operatorname to Set is continuous; it preserves limits (a coproduct in C is a product in C^\operatorname). If J is a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
, say J = \lbrace 1,\ldots,n\rbrace, then the coproduct of objects X_1,\ldots,X_n is often denoted by X_1\oplus\ldots\oplus X_n. Suppose all finite coproducts exist in ''C'', coproduct functors have been chosen as above, and 0 denotes the
initial object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element) ...
of ''C'' corresponding to the empty coproduct. We then have natural isomorphisms : X\oplus (Y \oplus Z)\cong (X\oplus Y)\oplus Z\cong X\oplus Y\oplus Z : X\oplus 0 \cong 0\oplus X \cong X : X\oplus Y \cong Y\oplus X. These properties are formally similar to those of a commutative
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
; a category with finite coproducts is an example of a symmetric
monoidal category In mathematics, a monoidal category (or tensor category) is a category (mathematics), category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an Object (cate ...
. If the category has a
zero object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
Z, then we have a unique morphism X\rightarrow Z (since Z is terminal) and thus a morphism X\oplus Y\rightarrow Z\oplus Y. Since Z is also initial, we have a canonical isomorphism Z\oplus Y\cong Y as in the preceding paragraph. We thus have morphisms X\oplus Y\rightarrow X and X\oplus Y\rightarrow Y, by which we infer a canonical morphism X\oplus Y\rightarrow X\times Y. This may be extended by induction to a canonical morphism from any finite coproduct to the corresponding product. This morphism need not in general be an isomorphism; in Grp it is a proper
epimorphism In category theory, an epimorphism is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f \implies g_1 = g_2. Epimorphisms are categorical analo ...
while in Set* (the category of
pointed set In mathematics, a pointed set (also based set or rooted set) is an ordered pair (X, x_0) where X is a Set (mathematics), set and x_0 is an element of X called the base point (also spelled basepoint). Map (mathematics), Maps between pointed sets ...
s) it is a proper
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphis ...
. In any preadditive category, this morphism is an isomorphism and the corresponding object is known as the biproduct. A category with all finite biproducts is known as a semiadditive category. If all families of objects indexed by J have coproducts in C, then the coproduct comprises a functor C^J\rightarrow C. Note that, like the product, this functor is ''covariant''.


See also

* Product * Limits and colimits *
Coequalizer In category theory, a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary category. It is the categorical construction dual to the equalizer. Definition A coequalizer is the ...
*
Direct limit In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any cate ...


References

*


External links


Interactive Web page
which generates examples of coproducts in the category of finite sets. Written b
Jocelyn Paine
{{Authority control Limits (category theory)