Reinforced concrete, also called ferroconcrete or ferro-concrete, is a
composite material
A composite or composite material (also composition material) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a ...
in which
concrete
Concrete is a composite material composed of aggregate bound together with a fluid cement that cures to a solid over time. It is the second-most-used substance (after water), the most–widely used building material, and the most-manufactur ...
's relatively low
tensile strength
Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or F_\text in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate ...
and
ductility
Ductility refers to the ability of a material to sustain significant plastic Deformation (engineering), deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic def ...
are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel reinforcing bars (known as
rebar
Rebar (short for reinforcement bar or reinforcing bar), known when massed as reinforcing steel or steel reinforcement, is a tension device added to concrete to form ''reinforced concrete'' and reinforced masonry structures to strengthen and aid ...
) and is usually embedded passively in the concrete before the concrete sets. However,
post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In
corrosion engineering
Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to mana ...
terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from
corrosion
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
.
Description

Reinforcing schemes are generally designed to resist
tensile stresses in particular regions of the concrete that might cause unacceptable
cracking and/or structural failure. Modern reinforced concrete can contain varied reinforcing materials made of steel,
polymer
A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s or alternate composite material in conjunction with rebar or not. Reinforced concrete may also be permanently stressed (concrete in compression, reinforcement in tension), so as to improve the behavior of the final structure under working loads. In the
United States
The United States of America (USA), also known as the United States (U.S.) or America, is a country primarily located in North America. It is a federal republic of 50 U.S. state, states and a federal capital district, Washington, D.C. The 48 ...
, the most common methods of doing this are known as
pre-tensioning and
post-tensioning.
For a strong,
ductile
Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversi ...
and
durable construction the reinforcement needs to have the following properties at least:
* High relative
strength
Strength may refer to:
Personal trait
*Physical strength, as in people or animals
*Character strengths like those listed in the Values in Action Inventory
*The exercise of willpower
Physics
* Mechanical strength, the ability to withstand ...
* High toleration of
tensile strain
* Good
bond to the concrete, irrespective of pH, moisture, and similar factors
* Thermal compatibility, not causing unacceptable stresses (such as expansion or contraction) in response to changing temperatures.
* Durability in the concrete environment, irrespective of corrosion or sustained stress for example.
History
The early development of the reinforced concrete was going on in parallel in England and France, in the middle of the 19th century.
French builder was the first one to use iron-reinforced concrete as a building technique. In 1853-55, Coignet built for himself the first iron reinforced concrete structure, a four-story house at 72
rue Charles Michels in the suburbs of
Paris
Paris () is the Capital city, capital and List of communes in France with over 20,000 inhabitants, largest city of France. With an estimated population of 2,048,472 residents in January 2025 in an area of more than , Paris is the List of ci ...
known as the . Coignet's descriptions of reinforcing concrete suggests that he did not do it for means of adding strength to the concrete but for keeping walls in monolithic construction from overturning.
The 1872–73
Pippen Building in
Brooklyn
Brooklyn is a Boroughs of New York City, borough of New York City located at the westernmost end of Long Island in the New York (state), State of New York. Formerly an independent city, the borough is coextensive with Kings County, one of twelv ...
, although not designed by Coignet, stands as a testament to his technique.
In 1854, English builder William B. Wilkinson reinforced the concrete roof and floors in the two-story house he was constructing. His positioning of the reinforcement demonstrated that, unlike his predecessors, he had knowledge of tensile stresses.
Between 1869 and 1870, Henry Eton would design, and Messrs W & T Phillips of London construct the wrought iron reinforced
Homersfield Bridge, with a 50' (15.25 meter) span, over the river Waveney, between the English counties of Norfolk and Suffolk.
Joseph Monier
Joseph Monier (; 8 November 1823, Saint-Quentin-la-Poterie, France – 13 March 1906, Paris) was a French gardener and one of the principal inventors of reinforced concrete.
Overview
As a gardener, Monier was not satisfied with the material ...
, a 19th-century French gardener, was a pioneer in the development of structural, prefabricated and reinforced concrete, having been dissatisfied with the existing materials available for making durable flowerpots. He was granted a patent for reinforcing concrete flowerpots by means of mixing a wire mesh and a mortar shell in 1867. In 1877, Monier was granted another patent for a more advanced technique of reinforcing concrete columns and girders, using iron rods placed in a grid pattern. Though Monier undoubtedly knew that reinforcing concrete would improve its inner cohesion, it is not clear whether he even knew how much the
tensile strength
Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or F_\text in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate ...
of concrete was improved by the reinforcing.
In 1877,
Thaddeus Hyatt published a report entitled ''An Account of Some Experiments with Portland-Cement-Concrete Combined with Iron as a Building Material, with Reference to Economy of Metal in Construction and for Security against Fire in the Making of Roofs, Floors, and Walking Surfaces'', in which he reported his experiments on the behaviour of reinforced concrete. His work played a major role in the evolution of concrete construction as a proven and studied science. Without Hyatt's work, more dangerous trial and error methods might have been depended on for the advancement in the technology.
[
Before the 1870s, the use of concrete construction, though dating back to the ]Roman Empire
The Roman Empire ruled the Mediterranean and much of Europe, Western Asia and North Africa. The Roman people, Romans conquered most of this during the Roman Republic, Republic, and it was ruled by emperors following Octavian's assumption of ...
, and having been reintroduced in the early 19th century, was not yet a scientifically proven technology.
Ernest L. Ransome, an English-born engineer, was an early innovator of reinforced concrete techniques at the end of the 19th century. Using the knowledge of reinforced concrete developed during the previous 50 years, Ransome improved nearly all the styles and techniques of the earlier inventors of reinforced concrete. Ransome's key innovation was to twist the reinforcing steel bar, thereby improving its bond with the concrete. Gaining increasing fame from his concrete constructed buildings, Ransome was able to build in 1886-1889 two of the first reinforced concrete bridges in North America.[ One of his ]bridges
A bridge is a structure built to span a physical obstacle (such as a body of water, valley, road, or railway) without blocking the path underneath. It is constructed for the purpose of providing passage over the obstacle, which is usually somet ...
still stands on Shelter Island in New York's East End.
One of the first concrete buildings constructed in the United States was a private home designed by William Ward, completed in 1876. The home was particularly designed to be fireproof.
G. A. Wayss was a German civil engineer and a pioneer of the iron and steel concrete construction. In 1879, Wayss bought the German rights to Monier's patents and, in 1884, his firm, Wayss & Freytag, made the first commercial use of reinforced concrete. Up until the 1890s, Wayss and his firm greatly contributed to the advancement of Monier's system of reinforcing, established it as a well-developed scientific technology.[
The Lamington Bridge was Australia's first large reinforced concrete road bridge. It was designed by Alfred Barton Brady, who was the Queensland Government Architect at the time of the bridge's construction in 1896. It has eleven spans and a total length of , larger than any known comparable bridge in the world at that time.
One of the first ]skyscraper
A skyscraper is a tall continuously habitable building having multiple floors. Most modern sources define skyscrapers as being at least or in height, though there is no universally accepted definition, other than being very tall high-rise bui ...
s made with reinforced concrete was the 16-story Ingalls Building in Cincinnati, constructed in 1904.[
The first reinforced concrete building in Southern California was the Laughlin Annex in downtown ]Los Angeles
Los Angeles, often referred to by its initials L.A., is the List of municipalities in California, most populous city in the U.S. state of California, and the commercial, Financial District, Los Angeles, financial, and Culture of Los Angeles, ...
, constructed in 1905. In 1906, 16 building permits were reportedly issued for reinforced concrete buildings in the City of Los Angeles, including the Temple Auditorium and 8-story Hayward Hotel.
In 1906, a partial collapse of the Bixby Hotel in Long Beach killed 10 workers during construction when shoring was removed prematurely. That event spurred a scrutiny of concrete erection practices and building inspections. The structure was constructed of reinforced concrete frames with hollow clay tile ribbed flooring and hollow clay tile infill walls. That practice was strongly questioned by experts and recommendations for "pure" concrete construction were made, using reinforced concrete for the floors and walls as well as the frames.
In April 1904, Julia Morgan
Julia Morgan (January 20, 1872 – February 2, 1957) was an American architect and engineer. She designed more than 700 buildings in California during a long and prolific career.Erica Reder"Julia Morgan was a local in ''The New Fillmore'', 1 Febr ...
, an American architect and engineer, who pioneered the aesthetic use of reinforced concrete, completed her first reinforced concrete structure, El Campanil, a bell tower at Mills College
Mills College at Northeastern University in Oakland, California is part of Northeastern University's global university system. Mills College was founded as the Young Ladies Seminary in 1852 in Benicia, California; it was relocated to Oakland in ...
, which is located across the bay from San Francisco
San Francisco, officially the City and County of San Francisco, is a commercial, Financial District, San Francisco, financial, and Culture of San Francisco, cultural center of Northern California. With a population of 827,526 residents as of ...
. Two years later, El Campanil survived the 1906 San Francisco earthquake
At 05:12 AM Pacific Time Zone, Pacific Standard Time on Wednesday, April 18, 1906, the coast of Northern California was struck by a major earthquake with an estimated Moment magnitude scale, moment magnitude of 7.9 and a maximum Mercalli inte ...
without any damage, which helped build her reputation and launch her prolific career. The 1906 earthquake also changed the public's initial resistance to reinforced concrete as a building material, which had been criticized for its perceived dullness. In 1908, the San Francisco Board of Supervisors
The San Francisco Board of Supervisors is the board of supervisors, legislative body within the government of San Francisco, government of the San Francisco, City and County of San Francisco in the U.S. state of California.
Government and polit ...
changed the city's building code
A building code (also building control or building regulations) is a set of rules that specify the standards for construction objects such as buildings and non-building structures. Buildings must conform to the code to obtain planning permis ...
s to allow wider use of reinforced concrete.
In 1906, the National Association of Cement Users (NACU) published ''Standard No. 1'' and, in 1910, the ''Standard Building Regulations for the Use of Reinforced Concrete''.
Use in construction
Many different types of structures and components of structures can be built using reinforced concrete elements including slabs, wall
A wall is a structure and a surface that defines an area; carries a load; provides security, shelter, or soundproofing; or serves a decorative purpose. There are various types of walls, including border barriers between countries, brick wal ...
s, beams, column
A column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above to other structural elements below. In other words, a column is a compression member ...
s, foundations
Foundation(s) or The Foundation(s) may refer to: Common uses
* Foundation (cosmetics), a skin-coloured makeup cream applied to the face
* Foundation (engineering), the element of a structure which connects it to the ground, and transfers loads f ...
, frame
A frame is often a structural system that supports other components of a physical construction and/or steel frame that limits the construction's extent.
Frame and FRAME may also refer to:
Physical objects
In building construction
*Framing (con ...
s and more.
Reinforced concrete can be classified as precast or cast-in-place concrete.
Designing and implementing the most efficient floor system is key to creating optimal building structures. Small changes in the design of a floor system can have significant impact on material costs, construction schedule, ultimate strength, operating costs, occupancy levels and end use of a building.
Without reinforcement, constructing modern structures with concrete material would not be possible.
Reinforced concrete elements
When reinforced concrete elements are used in construction, these reinforced concrete elements exhibit basic behavior when subjected to external loads. Reinforced concrete elements may be subject to tension, compression, bending
In applied mechanics, bending (also known as flexure) characterizes the behavior of a slender structural element subjected to an external Structural load, load applied perpendicularly to a longitudinal axis of the element.
The structural eleme ...
, shear, and/or torsion.
Behavior
Materials
Concrete is a mixture of coarse (stone or brick chips) and fine (generally sand and/or crushed stone) aggregates with a paste of binder material (usually Portland cement
Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar (masonry), mortar, stucco, and non-specialty grout. It was developed from other types of hydraulic lime in England in th ...
) and water. When cement is mixed with a small amount of water, it hydrates
In chemistry, a hydrate is a substance that contains water or its constituent elements. The chemical state of the water varies widely between different classes of hydrates, some of which were so labeled before their chemical structure was understo ...
to form microscopic opaque crystal lattices encapsulating and locking the aggregate into a rigid shape. The aggregates used for making concrete should be free from harmful substances like organic impurities, silt, clay, lignite, etc. Typical concrete mixes have high resistance to compressive stresses (about ); however, any appreciable tension (''e.g.,'' due to bending
In applied mechanics, bending (also known as flexure) characterizes the behavior of a slender structural element subjected to an external Structural load, load applied perpendicularly to a longitudinal axis of the element.
The structural eleme ...
) will break the microscopic rigid lattice, resulting in cracking and separation of the concrete. For this reason, typical non-reinforced concrete must be well supported to prevent the development of tension.
If a material with high strength in tension, such as steel
Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to steel's high Young's modulus, elastic modulus, Yield (engineering), yield strength, Fracture, fracture strength a ...
, is placed in concrete, then the composite material, reinforced concrete, resists not only compression but also bending and other direct tensile actions. A composite section where the concrete resists compression and reinforcement "rebar
Rebar (short for reinforcement bar or reinforcing bar), known when massed as reinforcing steel or steel reinforcement, is a tension device added to concrete to form ''reinforced concrete'' and reinforced masonry structures to strengthen and aid ...
" resists tension can be made into almost any shape and size for the construction industry.
Key characteristics
Three physical characteristics give reinforced concrete its special properties:
# The coefficient of thermal expansion
Thermal expansion is the tendency of matter to increase in length, area, or volume, changing its size and density, in response to an increase in temperature (usually excluding phase transitions).
Substances usually contract with decreasing temp ...
of concrete is similar to that of steel, eliminating large internal stresses due to differences in thermal
A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
expansion or contraction.
# When the cement paste within the concrete hardens, this conforms to the surface details of the steel, permitting any stress to be transmitted efficiently between the different materials. Usually steel bars are roughened or corrugated to further improve the bond or cohesion between the concrete and steel.
# The alkaline
In chemistry, an alkali (; from the Arabic word , ) is a basic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0. The ...
chemical environment provided by the alkali
In chemistry, an alkali (; from the Arabic word , ) is a basic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0. The a ...
reserve (KOH, NaOH) and the portlandite (calcium hydroxide
Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca( OH)2. It is a colorless crystal or white powder and is produced when quicklime ( calcium oxide) is mixed with water. Annually, approxim ...
) contained in the hardened cement paste causes a passivating film to form on the surface of the steel, making it much more resistant to corrosion
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
than it would be in neutral or acidic conditions. When the cement paste is exposed to the air and meteoric water reacts with the atmospheric CO2, portlandite and the calcium silicate hydrate
Calcium silicate hydrates (CSH or C-S-H) are the main products of the hydration of Portland cement and are primarily responsible for the strength of cement-based materials. They are the main binding phase (the "glue") in most concrete. Only well de ...
(CSH) of the hardened cement paste become progressively carbonated and the high pH gradually decreases from 13.5 – 12.5 to 8.5, the pH of water in equilibrium with calcite
Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
(calcium carbonate
Calcium carbonate is a chemical compound with the chemical formula . It is a common substance found in Rock (geology), rocks as the minerals calcite and aragonite, most notably in chalk and limestone, eggshells, gastropod shells, shellfish skel ...
) and the steel is no longer passivated.
As a rule of thumb, only to give an idea on orders of magnitude, steel is protected at pH above ~11 but starts to corrode below ~10 depending on steel characteristics and local physico-chemical conditions when concrete becomes carbonated. Carbonation of concrete along with chloride
The term chloride refers to a compound or molecule that contains either a chlorine anion (), which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond (). The pr ...
ingress are amongst the chief reasons for the failure of reinforcement bars in concrete.
The relative cross-sectional area
Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
of steel required for typical reinforced concrete is usually quite small and varies from 1% for most beams and slabs to 6% for some columns. Reinforcing bars are normally round in cross-section and vary in diameter. Reinforced concrete structures sometimes have provisions such as ventilated hollow cores to control their moisture & humidity.
Distribution of concrete (in spite of reinforcement) strength characteristics along the cross-section of vertical reinforced concrete elements is inhomogeneous.
Mechanism of composite action of reinforcement and concrete
The reinforcement in a RC structure, such as a steel bar, has to undergo the same strain or deformation as the surrounding concrete in order to prevent discontinuity, slip or separation of the two materials under load. Maintaining composite action requires transfer of load between the concrete and steel. The direct stress is transferred from the concrete to the bar interface so as to change the tensile stress in the reinforcing bar along its length. This load transfer is achieved by means of bond (anchorage) and is idealized as a continuous stress field that develops in the vicinity of the steel-concrete interface.
The reasons that the two different material components concrete and steel can work together are as follows:
(1) Reinforcement can be well bonded to the concrete, thus they can jointly resist external loads and deform.
(2) The thermal expansion coefficients of concrete and steel are so close
( to for concrete and for steel) that the thermal stress-induced damage to the bond between the two components can be prevented.
(3) Concrete can protect the embedded steel from corrosion and high-temperature induced softening.
Anchorage (bond) in concrete: Codes of specifications
Because the actual bond stress varies along the length of a bar anchored in a zone of tension, current international codes of specifications use the concept of development length rather than bond stress. The main requirement for safety against bond failure is to provide a sufficient extension of the length of the bar beyond the point where the steel is required to develop its yield stress and this length must be at least equal to its development length. However, if the actual available length is inadequate for full development, special anchorages must be provided, such as cogs or hooks or mechanical end plates. The same concept applies to lap splice length mentioned in the codes where splices (overlapping) provided between two adjacent bars in order to maintain the required continuity of stress in the splice zone.
Anticorrosion measures
In wet and cold climates, reinforced concrete for roads, bridges, parking structures and other structures that may be exposed to deicing
De-icing is the process of removing snow, ice or frost from a surface. Anti-icing is the application of chemicals that not only de-ice but also remain on a surface and continue to delay the reformation of ice for a certain period of time, or pr ...
salt may benefit from use of corrosion-resistant reinforcement such as uncoated, low carbon/chromium (micro composite), epoxy-coated, hot dip galvanized or stainless steel
Stainless steel, also known as inox, corrosion-resistant steel (CRES), or rustless steel, is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Stainless steel's resistance to corrosion comes from its chromi ...
rebar. Good design and a well-chosen concrete mix will provide additional protection for many applications.
Uncoated, low carbon/chromium rebar looks similar to standard carbon steel rebar due to its lack of a coating; its highly corrosion-resistant features are inherent in the steel microstructure. It can be identified by the unique ASTM specified mill marking on its smooth, dark charcoal finish. Epoxy-coated rebar can easily be identified by the light green color of its epoxy coating. Hot dip galvanized rebar may be bright or dull gray depending on length of exposure, and stainless rebar exhibits a typical white metallic sheen that is readily distinguishable from carbon steel reinforcing bar. Reference ASTM standard specifications A1035/A1035M Standard Specification for Deformed and Plain Low-carbon, Chromium, Steel Bars for Concrete Reinforcement, A767 Standard Specification for Hot Dip Galvanized Reinforcing Bars, A775 Standard Specification for Epoxy Coated Steel Reinforcing Bars and A955 Standard Specification for Deformed and Plain Stainless Bars for Concrete Reinforcement.
Another, cheaper way of protecting rebars is coating them with zinc phosphate. Zinc phosphate slowly reacts with calcium
Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
cations and the hydroxyl
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
anions present in the cement pore water and forms a stable hydroxyapatite
Hydroxyapatite (International Mineralogical Association, IMA name: hydroxylapatite) (Hap, HAp, or HA) is a naturally occurring mineral form of calcium apatite with the Chemical formula, formula , often written to denote that the Crystal struc ...
layer.
Penetrating sealants typically must be applied some time after curing. Sealants include paint, plastic foams, films and aluminum foil, felts or fabric mats sealed with tar, and layers of bentonite
Bentonite ( ) is an Absorption (chemistry), absorbent swelling clay consisting mostly of montmorillonite (a type of smectite) which can either be Na-montmorillonite or Ca-montmorillonite. Na-montmorillonite has a considerably greater swelli ...
clay, sometimes used to seal roadbeds.
Corrosion inhibitor
A corrosion inhibitor or anti-corrosive is a chemical compound added to a liquid or gas to decrease the corrosion rate of a metal that comes into contact with the fluid. The effectiveness of a corrosion inhibitor depends on fluid composition and ...
s, such as calcium nitrite 2)2">a(NO2)2 can also be added to the water mix before pouring concrete. Generally, 1–2 wt. % of 2)2">a(NO2)2with respect to cement weight is needed to prevent corrosion of the rebars. The nitrite anion is a mild oxidizer
An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ''electron donor''). In ot ...
that oxidizes the soluble and mobile ferrous ions (Fe2+) present at the surface of the corroding steel and causes them to precipitate as an insoluble ferric hydroxide (Fe(OH)3). This causes the passivation of steel at the anodic
An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devi ...
oxidation sites. Nitrite is a much more active corrosion inhibitor than nitrate
Nitrate is a polyatomic ion with the chemical formula . salt (chemistry), Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are solubility, soluble in wa ...
, which is a less powerful oxidizer of the divalent iron.
Reinforcement and terminology of beams
A beam bends under bending moment
In solid mechanics, a bending moment is the Reaction (physics), reaction induced in a structural element when an external force or Moment of force, moment is applied to the element, causing the element to bending, bend. The most common or simplest ...
, resulting in a small curvature. At the outer face (tensile face) of the curvature the concrete experiences tensile stress, while at the inner face (compressive face) it experiences compressive stress.
A singly reinforced beam is one in which the concrete element is only reinforced near the tensile face and the reinforcement, called tension steel, is designed to resist the tension.
A doubly reinforced beam is the section in which besides the tensile reinforcement the concrete element is also reinforced near the compressive face to help the concrete resist compression and take stresses. The latter reinforcement is called compression steel. When the compression zone of a concrete is inadequate to resist the compressive moment (positive moment), extra reinforcement has to be provided if the architect limits the dimensions of the section.
An under-reinforced beam is one in which the tension capacity of the tensile reinforcement is smaller than the combined compression capacity of the concrete and the compression steel (under-reinforced at tensile face). When the reinforced concrete element is subject to increasing bending moment, the tension steel yields while the concrete does not reach its ultimate failure condition. As the tension steel yields and stretches, an "under-reinforced" concrete also yields in a ductile manner, exhibiting a large deformation and warning before its ultimate failure. In this case the yield stress of the steel governs the design.
An over-reinforced beam is one in which the tension capacity of the tension steel is greater than the combined compression capacity of the concrete and the compression steel (over-reinforced at tensile face). So the "over-reinforced concrete" beam fails by crushing of the compressive-zone concrete and before the tension zone steel yields, which does not provide any warning before failure as the failure is instantaneous.
A balanced-reinforced beam is one in which both the compressive and tensile zones reach yielding at the same imposed load on the beam, and the concrete will crush and the tensile steel will yield at the same time. This design criterion is however as risky as over-reinforced concrete, because failure is sudden as the concrete crushes at the same time of the tensile steel yields, which gives a very little warning of distress in tension failure.
Steel-reinforced concrete moment-carrying elements should normally be designed to be under-reinforced so that users of the structure will receive warning of impending collapse.
The characteristic strength is the strength of a material where less than 5% of the specimen shows lower strength.
The design strength or nominal strength is the strength of a material, including a material-safety factor. The value of the safety factor generally ranges from 0.75 to 0.85 in Permissible stress design.
The ultimate limit state is the theoretical failure point with a certain probability. It is stated under factored loads and factored resistances.
Reinforced concrete structures are normally designed according to rules and regulations or recommendation of a code such as ACI-318, CEB, Eurocode 2 or the like. WSD, USD or LRFD methods are used in design of RC structural members. Analysis and design of RC members can be carried out by using linear or non-linear approaches. When applying safety factors, building codes normally propose linear approaches, but for some cases non-linear approaches. To see the examples of a non-linear numerical simulation and calculation visit the references:
Prestressed concrete
Prestressing concrete is a technique that greatly increases the load-bearing strength of concrete beams. The reinforcing steel in the bottom part of the beam, which will be subjected to tensile forces when in service, is placed in tension before the concrete is poured around it. Once the concrete has hardened, the tension on the reinforcing steel is released, placing a built-in compressive force on the concrete. When loads are applied, the reinforcing steel takes on more stress and the compressive force in the concrete is reduced, but does not become a tensile force. Since the concrete is always under compression, it is less subject to cracking and failure.
Common failure modes of steel reinforced concrete
Reinforced concrete can fail due to inadequate strength, leading to mechanical failure, or due to a reduction in its durability. Corrosion and freeze/thaw cycles may damage poorly designed or constructed reinforced concrete. When rebar corrodes, the oxidation products (rust
Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO(OH) ...
) expand and tends to flake, cracking the concrete and unbonding the rebar from the concrete. Typical mechanisms leading to durability problems are discussed below.
Mechanical failure
Cracking of the concrete section is nearly impossible to prevent; however, the size and location of cracks can be limited and controlled by appropriate reinforcement, control joints, curing methodology and concrete mix design. Cracking can allow moisture to penetrate and corrode the reinforcement. This is a serviceability failure in limit state design
Limit State Design (LSD), also known as Load And Resistance Factor Design (LRFD), refers to a design method used in structural engineering. A limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteri ...
. Cracking is normally the result of an inadequate quantity of rebar, or rebar spaced at too great a distance. The concrete cracks either under excess loading, or due to internal effects such as early thermal shrinkage while it cures.
Ultimate failure leading to collapse can be caused by crushing the concrete, which occurs when compressive stresses exceed its strength, by yielding or failure of the rebar when bending or shear stresses exceed the strength of the reinforcement, or by bond failure between the concrete and the rebar.
Carbonation
Carbonation, or neutralisation, is a chemical reaction between carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
in the air and calcium hydroxide
Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca( OH)2. It is a colorless crystal or white powder and is produced when quicklime ( calcium oxide) is mixed with water. Annually, approxim ...
and hydrated calcium silicate
Calcium silicate can refer to several silicates of calcium including:
*CaO·SiO2, wollastonite (CaSiO3)
*2CaO·SiO2, larnite (Ca2SiO4)
*3CaO·SiO2, alite or (Ca3SiO5)
*3CaO·2SiO2, (Ca3Si2O7).
This article focuses on Ca2SiO4, also known as calci ...
in the concrete.
When a concrete structure is designed, it is usual to specify the concrete cover for the rebar (the depth of the rebar within the object). The minimum concrete cover is normally regulated by design or building code
A building code (also building control or building regulations) is a set of rules that specify the standards for construction objects such as buildings and non-building structures. Buildings must conform to the code to obtain planning permis ...
s. If the reinforcement is too close to the surface, early failure due to corrosion may occur. The concrete cover depth can be measured with a cover meter. However, carbonated concrete incurs a durability problem only when there is also sufficient moisture and oxygen to cause electropotential corrosion of the reinforcing steel.
One method of testing a structure for carbonation is to drill
A drill is a tool used for making round holes or driving fasteners. It is fitted with a drill bit for making holes, or a screwdriver bit for securing fasteners. Historically, they were powered by hand, and later mains power, but cordless b ...
a fresh hole in the surface and then treat the cut surface with phenolphthalein
Phenolphthalein ( ) is a chemical compound with the chemical formula, formula carbon, C20hydrogen, H14oxygen, O4 and is often written as "HIn", "HPh", "phph" or simply "Ph" in shorthand notation. Phenolphthalein is often used as an indicator in ...
indicator solution. This solution turns pink
Pink is a pale tint of red, the color of the Dianthus plumarius, pink flower. It was first used as a color name in the late 17th century. According to surveys in Europe and the United States, pink is the color most often associated with charm, p ...
when in contact with alkaline concrete, making it possible to see the depth of carbonation. Using an existing hole does not suffice because the exposed surface will already be carbonated.
Chlorides
Chloride
The term chloride refers to a compound or molecule that contains either a chlorine anion (), which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond (). The pr ...
s can promote the corrosion of embedded rebar
Rebar (short for reinforcement bar or reinforcing bar), known when massed as reinforcing steel or steel reinforcement, is a tension device added to concrete to form ''reinforced concrete'' and reinforced masonry structures to strengthen and aid ...
if present in sufficiently high concentration. Chloride anions induce both localized corrosion (pitting corrosion
Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic (oxidation re ...
) and generalized corrosion of steel reinforcements. For this reason, one should only use fresh raw water or potable water for mixing concrete, ensure that the coarse and fine aggregates do not contain chlorides, rather than admixtures which might contain chlorides.
It was once common for calcium chloride
Calcium chloride is an inorganic compound, a Salt (chemistry), salt with the chemical formula . It is a white crystalline solid at room temperature, and it is highly soluble in water. It can be created by neutralising hydrochloric acid with cal ...
to be used as an admixture to promote rapid set-up of the concrete. It was also mistakenly believed that it would prevent freezing. However, this practice fell into disfavor once the deleterious effects of chlorides became known. It should be avoided whenever possible.
The use of de-icing salts on roadways, used to lower the freezing point
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
of water, is probably one of the primary causes of premature failure of reinforced or prestressed concrete bridge decks, roadways, and parking garages. The use of epoxy-coated reinforcing bars and the application of cathodic protection
Cathodic protection (CP; ) is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded " sacrifi ...
has mitigated this problem to some extent. Also FRP (fiber-reinforced polymer) rebars are known to be less susceptible to chlorides. Properly designed concrete mixtures that have been allowed to cure properly are effectively impervious to the effects of de-icers.
Another important source of chloride ions is sea water
Seawater, or sea water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has approximate ...
. Sea water contains by weight approximately 3.5% salts. These salts include sodium chloride
Sodium chloride , commonly known as Salt#Edible salt, edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs a ...
, magnesium sulfate
Magnesium sulfate or magnesium sulphate is a chemical compound, a salt with the formula , consisting of magnesium cations (20.19% by mass) and sulfate anions . It is a white crystalline solid, soluble in water but not in ethanol.
Magnesi ...
, calcium sulfate
Calcium sulfate (or calcium sulphate) is an inorganic salt with the chemical formula . It occurs in several hydrated forms; the anhydrous state (known as anhydrite) is a white crystalline solid often found in evaporite deposits. Its dihydrate ...
, and bicarbonate
In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula .
Bicarbonate serves a crucial bioche ...
s. In water these salts dissociate in free ions (Na+, Mg2+, Cl−, , ) and migrate with the water into the capillaries
A capillary is a small blood vessel, from 5 to 10 micrometres in diameter, and is part of the microcirculation system. Capillaries are microvessels and the smallest blood vessels in the body. They are composed of only the tunica intima (the in ...
of the concrete. Chloride ions, which make up about 50% of these ions, are particularly aggressive as a cause of corrosion of carbon steel reinforcement bars.
In the 1960s and 1970s it was also relatively common for magnesite
Magnesite is a mineral with the chemical formula ( magnesium carbonate). Iron, manganese, cobalt, and nickel may occur as admixtures, but only in small amounts.
Occurrence
Magnesite occurs as veins in and an alteration product of ultramafic r ...
, a chloride rich carbonate mineral
Carbonate minerals are those minerals containing the carbonate ion, .
Carbonate divisions Anhydrous carbonates
*Calcite group: trigonal
**Calcite CaCO3
**Gaspéite (Ni,Mg,Fe2+)CO3
**Magnesite MgCO3
**Otavite CdCO3
**Rhodochrosite MnCO3
**Sider ...
, to be used as a floor-topping material. This was done principally as a levelling and sound attenuating layer. However it is now known that when these materials come into contact with moisture they produce a weak solution of hydrochloric acid
Hydrochloric acid, also known as muriatic acid or spirits of salt, is an aqueous solution of hydrogen chloride (HCl). It is a colorless solution with a distinctive pungency, pungent smell. It is classified as a acid strength, strong acid. It is ...
due to the presence of chlorides in the magnesite. Over a period of time (typically decades), the solution causes corrosion
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
of the embedded rebar
Rebar (short for reinforcement bar or reinforcing bar), known when massed as reinforcing steel or steel reinforcement, is a tension device added to concrete to form ''reinforced concrete'' and reinforced masonry structures to strengthen and aid ...
s. This was most commonly found in wet areas or areas repeatedly exposed to moisture.
Alkali silica reaction
This a reaction of amorphous
In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
silica
Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant f ...
(chalcedony
Chalcedony ( or ) is a cryptocrystalline form of silica, composed of very fine intergrowths of quartz and moganite. These are both silica minerals, but they differ in that quartz has a trigonal crystal structure, while moganite is monoclinic ...
, chert
Chert () is a hard, fine-grained sedimentary rock composed of microcrystalline or cryptocrystalline quartz, the mineral form of silicon dioxide (SiO2). Chert is characteristically of biological origin, but may also occur inorganically as a prec ...
, siliceous limestone
Limestone is a type of carbonate rock, carbonate sedimentary rock which is the main source of the material Lime (material), lime. It is composed mostly of the minerals calcite and aragonite, which are different Polymorphism (materials science) ...
) sometimes present in the aggregates with the hydroxyl
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
ions (OH−) from the cement pore solution. Poorly crystallized silica (SiO2) dissolves and dissociates at high pH (12.5 - 13.5) in alkaline water. The soluble dissociated silicic acid
In chemistry, a silicic acid () is any chemical compound containing the element silicon attached to oxide () and hydroxyl () groups, with the general formula or, equivalently, . Orthosilicic acid is a representative example. Silicic acids are ra ...
reacts in the porewater with the calcium hydroxide
Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca( OH)2. It is a colorless crystal or white powder and is produced when quicklime ( calcium oxide) is mixed with water. Annually, approxim ...
( portlandite) present in the cement
A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel ( aggregate) together. Cement mi ...
paste to form an expansive calcium silicate hydrate
Calcium silicate hydrates (CSH or C-S-H) are the main products of the hydration of Portland cement and are primarily responsible for the strength of cement-based materials. They are the main binding phase (the "glue") in most concrete. Only well de ...
(CSH). The alkali–silica reaction (ASR) causes localised swelling responsible for tensile stress
In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to ''tensile'' stress and may undergo elongati ...
and cracking. The conditions required for alkali silica reaction are threefold:
(1) aggregate containing an alkali-reactive constituent (amorphous silica), (2) sufficient availability of hydroxyl ions (OH−), and (3) sufficient moisture, above 75% relative humidity
Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation (meteorology), precipitation, dew, or fog t ...
(RH) within the concrete. This phenomenon is sometimes popularly referred to as " concrete cancer". This reaction occurs independently of the presence of rebars; massive concrete structures such as dam
A dam is a barrier that stops or restricts the flow of surface water or underground streams. Reservoirs created by dams not only suppress floods but also provide water for activities such as irrigation, human consumption, industrial use, aqua ...
s can be affected.
Conversion of high alumina cement
Resistant to weak acids and especially sulfates, this cement cures quickly and has very high durability and strength. It was frequently used after World War II
World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
to make precast concrete objects. However, it can lose strength with heat or time (conversion), especially when not properly cured. After the collapse of three roofs made of prestressed concrete beams using high alumina cement, this cement was banned in the UK in 1976. Subsequent inquiries into the matter showed that the beams were improperly manufactured, but the ban remained.
Sulfates
Sulfate
The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ...
s (SO4) in the soil or in groundwater, in sufficient concentration, can react with the Portland cement in concrete causing the formation of expansive products, e.g., ettringite or thaumasite, which can lead to early failure of the structure. The most typical attack of this type is on concrete slabs and foundation walls at grades where the sulfate ion, via alternate wetting and drying, can increase in concentration. As the concentration increases, the attack on the Portland cement can begin. For buried structures such as pipe, this type of attack is much rarer, especially in the eastern United States. The sulfate ion concentration increases much slower in the soil mass and is especially dependent upon the initial amount of sulfates in the native soil. A chemical analysis of soil borings to check for the presence of sulfates should be undertaken during the design phase of any project involving concrete in contact with the native soil. If the concentrations are found to be aggressive, various protective coatings can be applied. Also, in the US ASTM C150 Type 5 Portland cement can be used in the mix. This type of cement is designed to be particularly resistant to a sulfate attack.
Steel plate construction
In steel plate construction, stringers join parallel steel plates. The plate assemblies are fabricated off site, and welded together on-site to form steel walls connected by stringers. The walls become the form into which concrete is poured. Steel plate construction speeds reinforced concrete construction by cutting out the time-consuming on-site manual steps of tying rebar and building forms. The method results in excellent strength because the steel is on the outside, where tensile forces are often greatest.
Fiber-reinforced concrete
Fiber reinforcement is mainly used in shotcrete
Shotcrete, gunite (), or sprayed concrete is concrete or mortar conveyed through a hose and pneumatically projected at high velocity onto a surface. This construction technique was invented by Carl Akeley and first used in 1907. The concr ...
, but can also be used in normal concrete. Fiber-reinforced normal concrete is mostly used for on-ground floors and pavements, but can also be considered for a wide range of construction parts (beams, pillars, foundations, etc.), either alone or with hand-tied rebars.
Concrete reinforced with fibers (which are usually steel, glass
Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
, plastic fibers) or cellulose polymer fiber is less expensive than hand-tied rebar. The shape, dimension, and length of the fiber are important. A thin and short fiber, for example short, hair-shaped glass fiber, is only effective during the first hours after pouring the concrete (its function is to reduce cracking while the concrete is stiffening), but it will not increase the concrete tensile strength. A normal-size fiber for European shotcrete (1 mm diameter, 45 mm length—steel or plastic) will increase the concrete's tensile strength. Fiber reinforcement is most often used to supplement or partially replace primary rebar, and in some cases it can be designed to fully replace rebar.
Steel is the strongest commonly available fiber, and comes in different lengths (30 to 80 mm in Europe) and shapes (end-hooks). Steel fibers can only be used on surfaces that can tolerate or avoid corrosion and rust stains. In some cases, a steel-fiber surface is faced with other materials.
Glass fiber is inexpensive and corrosion-proof, but not as ductile as steel. Recently, spun basalt fiber, long available in Eastern Europe
Eastern Europe is a subregion of the Europe, European continent. As a largely ambiguous term, it has a wide range of geopolitical, geographical, ethnic, cultural and socio-economic connotations. Its eastern boundary is marked by the Ural Mountain ...
, has become available in the U.S. and Western Europe. Basalt fiber is stronger and less expensive than glass, but historically has not resisted the alkaline environment of Portland cement
Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar (masonry), mortar, stucco, and non-specialty grout. It was developed from other types of hydraulic lime in England in th ...
well enough to be used as direct reinforcement. New materials use plastic binders to isolate the basalt fiber from the cement.
The premium fibers are graphite
Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
-reinforced plastic fibers, which are nearly as strong as steel, lighter in weight, and corrosion-proof. Some experiments have had promising early results with carbon nanotubes
A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range (nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized:
* ''Single-walled carbon nanotubes'' (''SWC ...
, but the material is still far too expensive for any building.
Non-steel reinforcement
There is considerable overlap between the subjects of non-steel reinforcement and fiber-reinforcement of concrete. The introduction of non-steel reinforcement of concrete is relatively recent; it takes two major forms: non-metallic rebar rods, and non-steel (usually also non-metallic) fibers incorporated into the cement matrix. For example, there is increasing interest in glass fiber reinforced concrete (GFRC) and in various applications of polymer fibers incorporated into concrete. Although currently there is not much suggestion that such materials will replace metal rebar, some of them have major advantages in specific applications, and there also are new applications in which metal rebar simply is not an option. However, the design and application of non-steel reinforcing is fraught with challenges. For one thing, concrete is a highly alkaline environment, in which many materials, including most kinds of glass, have a poor service life
A product's service life is its period of use in service. Several related terms describe more precisely a product's life, from the point of manufacture, storage, and distribution, and eventual use.
Service life has been defined as "a product' ...
. Also, the behavior of such reinforcing materials differs from the behavior of metals, for instance in terms of shear strength, creep and elasticity.
Fiber-reinforced plastic/polymer (FRP) and glass-reinforced plastic
Fiberglass (American English) or fibreglass ( Commonwealth English) is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass c ...
(GRP) consist of fibers of polymer
A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
, glass, carbon, aramid or other polymers or high-strength fibers set in a resin matrix to form a rebar rod, or grid, or fiber. These rebars are installed in much the same manner as steel rebars. The cost is higher but, suitably applied, the structures have advantages, in particular a dramatic reduction in problems related to corrosion
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
, either by intrinsic concrete alkalinity or by external corrosive fluids that might penetrate the concrete. These structures can be significantly lighter and usually have a longer service life
A product's service life is its period of use in service. Several related terms describe more precisely a product's life, from the point of manufacture, storage, and distribution, and eventual use.
Service life has been defined as "a product' ...
. The cost of these materials has dropped dramatically since their widespread adoption in the aerospace industry and by the military.
In particular, FRP rods are useful for structures where the presence of steel would not be acceptable. For example, MRI
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and rad ...
machines have huge magnets, and accordingly require non-magnetic
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, m ...
buildings. Again, toll booths that read radio tags need reinforced concrete that is transparent to radio waves
Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths ...
. Also, where the design life
The design life of a component or product is the period of time during which the item is expected by its designers to work within its specified parameters; in other words, the life expectancy of the item. Engineers follow a theory to calculate th ...
of the concrete structure is more important than its initial costs, non-steel reinforcing often has its advantages where corrosion of reinforcing steel is a major cause of failure. In such situations corrosion-proof reinforcing can extend a structure's life substantially, for example in the intertidal zone
The intertidal zone or foreshore is the area above water level at low tide and underwater at high tide; in other words, it is the part of the littoral zone within the tidal range. This area can include several types of habitats with various ...
. FRP rods may also be useful in situations where it is likely that the concrete structure may be compromised in future years, for example the edges of balconies
A balcony (from , "scaffold") is a platform projecting from the wall of a building, supported by columns or console brackets, and enclosed with a balustrade, usually above the ground floor. They are commonly found on multi-level houses, apartme ...
when balustrade
A baluster () is an upright support, often a vertical moulded shaft, square, or lathe-turned form found in stairways, parapets, and other architectural features. In furniture construction it is known as a spindle. Common materials used in its ...
s are replaced, and bathroom floors in multi-story construction where the service life of the floor structure is likely to be many times the service life of the waterproofing
Waterproofing is the process of making an object, person or structure waterproof or water-resistant so that it remains relatively unaffected by water or resists the ingress of water under specified conditions. Such items may be used in wet env ...
building membrane.
Plastic reinforcement often is stronger, or at least has a better strength to weight ratio than reinforcing steels. Also, because it resists corrosion, it does not need a protective concrete cover as thick as steel reinforcement does (typically 30 to 50 mm or more). FRP-reinforced structures therefore can be lighter and last longer. Accordingly, for some applications the whole-life cost
Whole-life cost is the total cost of ownership over the life of an asset. The concept is also known as life-cycle cost (LCC) or lifetime cost, and is commonly referred to as "cradle to grave" or "womb to tomb" costs. Costs considered include the ...
will be price-competitive with steel-reinforced concrete.
The material properties
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one ma ...
of FRP or GRP bars differ markedly from steel, so there are differences in the design considerations. FRP or GRP bars have relatively higher tensile strength but lower stiffness, so that deflections are likely to be higher than for equivalent steel-reinforced units. Structures with internal FRP reinforcement typically have an elastic deformability comparable to the plastic deformability (ductility) of steel reinforced structures. Failure in either case is more likely to occur by compression of the concrete than by rupture of the reinforcement. Deflection is always a major design consideration for reinforced concrete. Deflection limits are set to ensure that crack widths in steel-reinforced concrete are controlled to prevent water, air or other aggressive substances reaching the steel and causing corrosion. For FRP-reinforced concrete, aesthetics and possibly water-tightness will be the limiting criteria for crack width control. FRP rods also have relatively lower compressive strengths than steel rebar, and accordingly require different design approaches for reinforced concrete columns.
One drawback to the use of FRP reinforcement is their limited fire resistance. Where fire safety is a consideration, structures employing FRP have to maintain their strength and the anchoring of the forces at temperatures to be expected in the event of fire. For purposes of fireproofing
Fireproofing is rendering something (Building, structures, materials, etc.) resistant to fire, or incombustible; or material for use in making anything fire-proof. It is a passive fire protection measure. "Fireproof" or "fireproofing" can be u ...
, an adequate thickness of cement concrete cover or protective cladding is necessary. The addition of 1 kg/m3 of polypropylene
Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer Propene, propylene.
Polypropylene belongs to the group of polyolefin ...
fibers to concrete has been shown to reduce spall
Spall are fragments of a material that are broken off a larger solid body. It can be produced by a variety of mechanisms, including as a result of projectile impact, corrosion, weathering, cavitation, or excessive rolling pressure (as in a ba ...
ing during a simulated fire. (The improvement is thought to be due to the formation of pathways out of the bulk of the concrete, allowing steam pressure to dissipate.)
Another problem is the effectiveness of shear reinforcement. FRP rebar
Rebar (short for reinforcement bar or reinforcing bar), known when massed as reinforcing steel or steel reinforcement, is a tension device added to concrete to form ''reinforced concrete'' and reinforced masonry structures to strengthen and aid ...
stirrups formed by bending before hardening generally perform relatively poorly in comparison to steel stirrups or to structures with straight fibers. When strained, the zone between the straight and curved regions are subject to strong bending, shear, and longitudinal stresses. Special design techniques are necessary to deal with such problems.
There is growing interest in applying external reinforcement to existing structures using advanced materials such as composite (fiberglass, basalt, carbon) rebar, which can impart exceptional strength. Worldwide, there are a number of brands of composite rebar recognized by different countries, such as Aslan, DACOT, V-rod, and ComBar. The number of projects using composite rebar increases day by day around the world, in countries ranging from USA, Russia, and South Korea to Germany.
See also
* Anchorage in reinforced concrete
* Concrete cover
* Concrete slab
A concrete slab is a common structural element of modern buildings, consisting of a flat, horizontal surface made of cast concrete. Steel- reinforced slabs, typically between 100 and 500 mm thick, are most often used to construct floors and ...
* Corrosion engineering
Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to mana ...
* Cover meter
* Falsework
Falsework consists of temporary structures used in construction to support a permanent structure until its construction is sufficiently advanced to support itself. For arches, this is specifically called centering. Falsework includes temporary ...
* Ferrocement
* Formwork
Formwork is Molding (process), molds into which concrete or similar materials are either precast concrete, precast or cast-in-place concrete, cast-in-place. In the context of concrete construction, the falsework supports the shuttering mold ...
* Henri de Miffonis
* Interfacial transition zone
* Precast concrete
Precast concrete is a construction product produced by casting concrete in a reusable molding (process), mold or "form" which is then cured in a controlled environment, transported to the construction site and maneuvered into place; examples i ...
* Reinforced concrete structures durability
* Reinforced solid
* Structural robustness
* Types of concrete
Concrete is produced in a variety of compositions, finishes and performance characteristics to meet a wide range of needs.
Mix design
Modern concrete mix designs can be complex. The choice of a concrete mix depends on the need of the project ...
References
Further reading / External links
* Threlfall A., ''et al.'' ''Reynolds's Reinforced Concrete Designer's Handbook – 11th ed.'' .
* Newby F., ''Early Reinforced Concrete'', Ashgate Variorum, 2001, .
* Kim, S., Surek, J and J. Baker-Jarvis
"Electromagnetic Metrology on Concrete and Corrosion."
''Journal of Research of the National Institute of Standards and Technology'', Vol. 116, No. 3 (May–June 2011): 655–669.
* Daniel R., ''Formwork UK''
"Concrete frame structures."
'.
*
*
*
Short documentary about reinforced concrete and its challenges
2024 (The Aesthetic City)
*
{{DEFAULTSORT:Reinforced Concrete
Concrete buildings and structures
Structural engineering
Materials science
Civil engineering