HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the commutator gives an indication of the extent to which a certain
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation ...
fails to be
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
. There are different definitions used in
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
and ring theory.


Group theory

The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (that is, if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of ''G'' generated by all commutators is closed and is called the ''derived group'' or the ''
commutator subgroup In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal ...
'' of ''G''. Commutators are used to define
nilpotent In mathematics, an element x of a ring (mathematics), ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister Idempotent (ring theory), idem ...
and solvable groups and the largest abelian
quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For ex ...
. The definition of the commutator above is used throughout this article, but many group theorists define the commutator as : . Using the first definition, this can be expressed as .


Identities (group theory)

Commutator identities are an important tool in
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
. The expression denotes the conjugate of by , defined as . # x^y = x^
, y The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
#
, x The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
= ,y. # , zy=
, y The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
cdot
, z The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
y and z, y=
, y The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
z \cdot
, y The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
# \left , y^\right=
, x The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
and \left ^, y\right=
, x The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
. # \left left[x, y^\right z\right">,_y^\right.html" ;"title="left[x, y^\right">left[x, y^\right z\righty \cdot \left[\left[y, z^\right], x\right]^z \cdot \left[\left[z, x^\right], y\right]^x = 1 and \left[\left[x, y\right], z^x\right] \cdot \leftz ,x], y^z\right] \cdot \lefty, z], x^y\right] = 1. Identity (5) is also known as the ''Hall–Witt identity'', after Philip Hall and Ernst Witt. It is a group-theoretic analogue of the
Jacobi identity In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associ ...
for the ring-theoretic commutator (see next section). N.B., the above definition of the conjugate of by is used by some group theorists. Many other group theorists define the conjugate of by as . This is often written ^x a. Similar identities hold for these conventions. Many identities that are true modulo certain subgroups are also used. These can be particularly useful in the study of
solvable group In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminat ...
s and nilpotent groups. For instance, in any group, second powers behave well: : (xy)^2 = x^2 y^2
, x The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
, x The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
y]. If the derived subgroup is central, then : (xy)^n = x^n y^n
, x The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\binom.


Ring theory

Rings often do not support division. Thus, the commutator of two elements ''a'' and ''b'' of a ring (or any
associative algebra In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
) is defined differently by : , b= ab - ba. The commutator is zero if and only if ''a'' and ''b'' commute. In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
, if two endomorphisms of a space are represented by commuting matrices in terms of one basis, then they are so represented in terms of every basis. By using the commutator as a Lie bracket, every associative algebra can be turned into a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
. The anticommutator of two elements and of a ring or associative algebra is defined by : \ = ab + ba. Sometimes ,b+ is used to denote anticommutator, while ,b- is then used for commutator. The anticommutator is used less often, but can be used to define
Clifford algebra In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As -algebras, they generalize the real number ...
s and Jordan algebras and in the derivation of the
Dirac equation In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
in
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
. The commutator of two operators acting on a
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
is a central concept in
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, since it quantifies how well the two
observable In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum ...
s described by these operators can be measured simultaneously. The
uncertainty principle The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
is ultimately a theorem about such commutators, by virtue of the Robertson–Schrödinger relation. In
phase space The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the p ...
, equivalent commutators of function star-products are called Moyal brackets and are completely isomorphic to the Hilbert space commutator structures mentioned.


Identities (ring theory)

The commutator has the following properties:


Lie-algebra identities

# + B, C= , C+ , C/math> # , A= 0 # , B= - , A/math> # , [B, C + [B, [C, A">,_C.html" ;"title=", [B, C">, [B, C + [B, [C, A + [C, [A, B">,_C">,_[B,_C<_a>_+_[B,_[C,_A.html" ;"title=",_C.html" ;"title=", [B, C">, [B, C + [B, [C, A">,_C.html" ;"title=", [B, C">, [B, C + [B, [C, A + [C, [A, B = 0 Relation (3) is called anticommutativity, while (4) is the
Jacobi identity In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associ ...
.


Additional identities

# , BC= , B + B , C/math> # , BCD= , BD + B , C + BC
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
/math> # , BCDE= , BDE + B , CE + BC
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
+ BCD , E/math> # B, C= A , C+ , C # BC, D= AB
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
+ A
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
+
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
C # BCD, E= ABC , E+ AB , E + A , ED + , ECD # , B + C= , B+ , C/math> # + B, C + D= , C+
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
+ , C+
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
/math> # B, CD= A , C + , CD + CA
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
+ C
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
=A , C + AC ,D+ ,CB + C
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
# A, C
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
= [A, B C">[A,_B.html" ;"title="[A, B">[A, B C D">[A,_B.html"_;"title="[A,_B">[A,_B<_a>_C.html" ;"title="[A,_B.html" ;"title="[A, B">[A, B C">[A,_B.html" ;"title="[A, B">[A, B C D+ [B, C], D], A] + [C, D], A], B] + [D, A], B], C] If is a fixed element of a ring ''R'', identity (1) can be interpreted as a product rule, Leibniz rule for the map \operatorname_A: R \rightarrow R given by \operatorname_A(B) = , B/math>. In other words, the map ad''A'' defines a derivation on the ring ''R''. Identities (2), (3) represent Leibniz rules for more than two factors, and are valid for any derivation. Identities (4)–(6) can also be interpreted as Leibniz rules. Identities (7), (8) express Z- bilinearity. From identity (9), one finds that the commutator of integer powers of ring elements is: : ^N, B^M= \sum_^\sum_^ A^B^ ,BB^A^ = \sum_^\sum_^ B^A^ ,BA^B^ Some of the above identities can be extended to the anticommutator using the above ± subscript notation. For example: # B, C\pm = A , C- + , C\pm B # B, CD\pm = A , C- D + AC
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
- + , C- DB + C
, D The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\pm B # A,B ,D= [B,C+,A">[B,C.html" ;"title="[B,C">[B,C+,A+,D">[B,C.html"_;"title="[B,C">[B,C<_a>+,A.html" ;"title="[B,C.html" ;"title="[B,C">[B,C+,A">[B,C.html" ;"title="[B,C">[B,C+,A+,D[B,D]_+,A]_+,C]+[A,D]_+,B]_+,C]- ,C+,B]_+,D] # \left[A, , C\pm\right] + \left[B, [C, A]_\pm\right] + \left[C, [A, B]_\pm\right] = 0 # ,BC\pm = ,B- C + B ,C\pm = ,B\pm C \mp B ,C- # ,BC= ,B\pm C \mp B ,C\pm


Exponential identities

Consider a ring or algebra in which the exponential e^A = \exp(A) = 1 + A + \tfracA^2 + \cdots can be meaningfully defined, such as a Banach algebra or a ring of
formal power series In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial su ...
. In such a ring, Hadamard's lemma applied to nested commutators gives: e^A Be^ \ =\ B + , B+ \frac , [A, B + \frac[A, , [A, B">,_B.html" ;"title=", [A, B">, [A, B + \frac[A, , [A, B+ \cdots \ =\ e^(B). (For the last expression, see ''Adjoint derivation'' below.) This formula underlies the Baker–Campbell–Hausdorff formula#An important lemma">Baker–Campbell–Hausdorff expansion of log(exp(''A'') exp(''B'')). A similar expansion expresses the group commutator of expressions e^A (analogous to elements of a Lie group) in terms of a series of nested commutators (Lie brackets), e^A e^B e^ e^ = \exp\!\left( , B+ \frac[AB, , B + \frac \left(\frac , [B, [B, A">,_[B,_A.html" ;"title=", [B, [B, A">, [B, [B, A+ [AB, [AB, , B]\right) + \cdots\right).


Graded rings and algebras

When dealing with graded algebras, the commutator is usually replaced by the graded commutator, defined in homogeneous components as : omega, \eta := \omega\eta - (-1)^ \eta\omega.


Adjoint derivation

Especially if one deals with multiple commutators in a ring ''R'', another notation turns out to be useful. For an element x\in R, we define the adjoint mapping \mathrm_x:R\to R by: : \operatorname_x(y) =
, y The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
= xy-yx. This mapping is a derivation on the ring ''R'': : \mathrm_x\!(yz) \ =\ \mathrm_x\!(y) \,z \,+\, y\,\mathrm_x\!(z). By the
Jacobi identity In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associ ...
, it is also a derivation over the commutation operation: : \mathrm_x ,z\ =\ mathrm_x\!(y),z\,+\, ,\mathrm_x\!(z). Composing such mappings, we get for example \operatorname_x\operatorname_y(z) = , [y, z,">,_z.html" ;"title=", [y, z">, [y, z, and \operatorname_x^2\!(z) \ =\ \operatorname_x\!(\operatorname_x\!(z)) \ =\ [x, [x, z]\,]. We may consider \mathrm itself as a mapping, \mathrm: R \to \mathrm(R) , where \mathrm(R) is the ring of mappings from ''R'' to itself with composition as the multiplication operation. Then \mathrm is a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
homomorphism, preserving the commutator: : \operatorname_ = \left \operatorname_x, \operatorname_y \right By contrast, it is not always a ring homomorphism: usually \operatorname_ \,\neq\, \operatorname_x\operatorname_y .


General Leibniz rule

The general Leibniz rule, expanding repeated derivatives of a product, can be written abstractly using the adjoint representation: : x^n y = \sum_^n \binom \operatorname_x^k\!(y)\, x^. Replacing x by the differentiation operator \partial, and y by the multiplication operator m_f : g \mapsto fg, we get \operatorname(\partial)(m_f) = m_, and applying both sides to a function ''g'', the identity becomes the usual Leibniz rule for the ''n''th derivative \partial^\!(fg).


See also

*
Anticommutativity In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the ''inverse'' of the result with unswapped ...
*
Associator In abstract algebra, the term associator is used in different ways as a measure of the associativity, non-associativity of an algebraic structure. Associators are commonly studied as triple systems. Ring theory For a non-associative ring or non ...
*
Baker–Campbell–Hausdorff formula In mathematics, the Baker–Campbell–Hausdorff formula gives the value of Z that solves the equation e^X e^Y = e^Z for possibly noncommutative and in the Lie algebra of a Lie group. There are various ways of writing the formula, but all ultima ...
*
Canonical commutation relation In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, hat x,\hat p ...
*
Centralizer In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set \operatorname_G(S) of elements of ''G'' that commute with every element of ''S'', or equivalently, the set of ele ...
a.k.a. commutant *
Derivation (abstract algebra) In mathematics, a derivation is a function on an algebra over a field, algebra that generalizes certain features of the derivative operator. Specifically, given an algebra ''A'' over a ring (mathematics), ring or a field (mathematics), field ''K'' ...
* Moyal bracket * Pincherle derivative *
Poisson bracket In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. Th ...
* Ternary commutator * Three subgroups lemma


Notes


References

* * * * * * *


Further reading

*


External links

* {{Authority control Abstract algebra Group theory Binary operations Mathematical identities