
Coke is a grey, hard, and
porous coal-based fuel with a high
carbon content and few
impurities
In chemistry and materials science, impurities are chemical substances inside a confined amount of liquid, gas, or solid, which differ from the chemical composition of the material or compound. Firstly, a pure chemical should appear thermodynam ...
, made by heating
coal or
oil in the absence of air—a
destructive distillation process. It is an important industrial product, used mainly in
iron ore
Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the fo ...
smelting, but also as a fuel in
stoves and
forge
A forge is a type of hearth used for heating metals, or the workplace (smithy) where such a hearth is located. The forge is used by the smith to heat a piece of metal to a temperature at which it becomes easier to shape by forging, or to th ...
s when
air pollution is a concern.
The unqualified term "coke" usually refers to the product derived from low-ash and low-sulphur
bituminous coal
Bituminous coal, or black coal, is a type of coal containing a tar-like substance called bitumen or asphalt. Its coloration can be black or sometimes dark brown; often there are well-defined bands of bright and dull material within the seams. It ...
by a process called
coking. A similar product called
petroleum coke, or pet coke, is obtained from
crude oil
Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crude ...
in
oil refineries. Coke may also be formed naturally by
geologic
Geology () is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other Eart ...
processes.
[B. Kwiecińska and H. I. Petersen (2004): "Graphite, semi-graphite, natural coke, and natural char classification — ICCP system". ''International Journal of Coal Geology'', volume 57, issue 2, pages 99-116. ]
History
China
Historical sources dating to the 4th century describe the production of coke in
ancient China
The earliest known written records of the history of China date from as early as 1250 BC, from the Shang dynasty (c. 1600–1046 BC), during the reign of king Wu Ding. Ancient historical texts such as the '' Book of Documents'' (early chapte ...
.
The Chinese first used coke for heating and cooking no later than the ninth century. By the first decades of the eleventh century, Chinese ironworkers in the
Yellow River valley began to fuel their furnaces with coke, solving their fuel problem in that tree-sparse region.
China is the largest producer and exporter of coke today. China produces 60% of the world's coke. Concerns about
air pollution have motivated technological changes in the coke industry by elimination of outdated coking technologies that are not energy-efficient.
Britain
In 1589, a patent was granted to Thomas Proctor and William Peterson for making iron and
steel
Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
and melting lead with "earth-coal, sea-coal, turf, and peat". The patent contains a distinct allusion to the preparation of coal by "cooking". In 1590, a patent was granted to the
Dean of York to "purify pit-coal and free it from its offensive smell". In 1620, a patent was granted to a company composed of William St. John and other knights, mentioning the use of coke in smelting ores and manufacturing metals. In 1627, a patent was granted to Sir John Hacket and Octavius de Strada for a method of rendering sea-coal and pit-coal as useful as
charcoal
Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, cal ...
for burning in houses, without offence by smell or smoke.
In 1603,
Hugh Plat suggested that coal might be charred in a manner analogous to the way
charcoal
Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, cal ...
is produced from wood. This process was not employed until 1642, when coke was used for roasting
malt
Malt is germinated cereal grain that has been dried in a process known as " malting". The grain is made to germinate by soaking in water and is then halted from germinating further by drying with hot air.
Malted grain is used to make beer, wh ...
in
Derbyshire; previously, brewers had used wood, as uncoked coal cannot be used in brewing because its sulphurous fumes would impart a foul taste to the
beer. It was considered an improvement in quality, and brought about an "alteration which all England admired"—the coke process allowed for a lighter roast of the malt, leading to the creation of what by the end of the 17th century was called
pale ale
Pale ale is a golden to amber coloured beer style brewed with pale malt. The term first appeared around 1703 for beers made from malts dried with high-carbon coke, which resulted in a lighter colour than other beers popular at that time. Diff ...
.
[
]
In 1709, Abraham Darby I established a coke-fired blast furnace
A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being "forced" or supplied above atmospheric ...
to produce cast iron. Coke's superior crushing strength allowed blast furnaces to become taller and larger. The ensuing availability of inexpensive iron was one of the factors leading to the Industrial Revolution. Before this time, iron-making used large quantities of charcoal, produced by burning wood. As the coppicing of forests became unable to meet the demand, the substitution of coke for charcoal became common in Great Britain, and coke was manufactured by burning coal in heaps on the ground so that only the outer layer burned, leaving the interior of the pile in a carbonized state. In the late 18th century, brick beehive ovens were developed, which allowed more control over the burning process.
In 1768, John Wilkinson built a more practical oven for converting coal into coke. Wilkinson improved the process by building the coal heaps around a low central chimney built of loose bricks and with openings for the combustion gases to enter, resulting in a higher yield of better coke. With greater skill in the firing, covering and quenching of the heaps, yields were increased from about 33% to 65% by the middle of the 19th century. The Scottish iron industry expanded rapidly in the second quarter of the 19th century, through the adoption of the hot-blast process in its coalfields.
In 1802, a battery of beehive ovens was set up near Sheffield, to coke the Silkstone coal seam for use in crucible steel melting. By 1870, there were 14,000 beehive ovens in operation on the West Durham coalfields, producing 4,000,000 long tons of coke per year. As a measure of the expansion of coke making, the requirements of the iron industry in Britain were about 1,000,000 tons per year in the early 1850s, rising to about 7,000,000 tons by 1880. Of these, about 5,000,000 tons were produced in Durham county, 1,000,000 tons in the South Wales coalfield, and 1,000,000 tons in Yorkshire and Derbyshire.[
]
In the first years of steam locomotive
A steam locomotive is a locomotive that provides the force to move itself and other vehicles by means of the expansion of steam. It is fuelled by burning combustible material (usually coal, oil or, rarely, wood) to heat water in the locomot ...
s, coke was the normal fuel. This resulted from an early piece of environmental legislation; any proposed locomotive had to "consume its own smoke". This was not technically possible to achieve until the firebox arch came into use, but burning coke, with its low smoke emissions, was considered to meet the requirement. This rule was quietly dropped, and cheaper coal became the normal fuel, as railways gained acceptance among the public. The smoke plume produced by a travelling locomotive seems now to be a mark of a steam railway, and so preserved for posterity.
So-called "gas works" produced coke by heating coal in enclosed chambers. The flammable gas that was given off was stored in gas holders, to be used domestically and industrially for cooking, heating and lighting. The gas was commonly known as " town gas" since underground networks of pipes ran through most towns. It was replaced by " natural gas" (initially from the North Sea oil and gas fields) in the decade after 1967. Other byproducts of coke production included tar and ammonia, while the coke was used instead of coal in cooking ranges and to provide heat in domestic premises before the advent of central heating.
United States
In the US, the first use of coke in an iron furnace occurred around 1817 at Isaac Meason's Plumsock puddling furnace and rolling mill in Fayette County, Pennsylvania. In the late 19th century, the coalfields of western Pennsylvania provided a rich source of raw material for coking. In 1885, the Rochester and Pittsburgh Coal and Iron Company constructed the world's longest string of coke ovens in Walston, Pennsylvania Walston is an unincorporated community in Jefferson County, in the U.S. state of Pennsylvania.
History
Walston got its start ''circa'' 1883 when the Buffalo, Rochester and Pittsburgh Railway
The Buffalo, Rochester, and Pittsburgh Railway was on ...
, with 475 ovens over a length of 2 km (1.25 miles). Their output reached 22,000 tons per month. The Minersville Coke Ovens
Minersville Coke Ovens is a historic set of Coke (fuel), coke oven site located at Carbon Township, Huntingdon County, Pennsylvania, Carbon Township in Huntingdon County, Pennsylvania. The property includes the remains of beehive and Mitchell coke ...
in Huntingdon County, Pennsylvania, were listed on the National Register of Historic Places in 1991.
Between 1870 and 1905, the number of beehive ovens in the US skyrocketed from about 200 to almost 31,000, which produced nearly 18,000,000 tons of coke in the Pittsburgh area alone. One observer boasted that if loaded into a train, "the year's production would make up a train so long that the engine in front of it would go to San Francisco and come back to Connellsville before the caboose had gotten started out of the Connellsville yards!" The number of beehive ovens in Pittsburgh peaked in 1910 at almost 48,000.
Although it made a top-quality fuel, coking poisoned the surrounding landscape. After 1900, the serious environmental damage of beehive coking attracted national notice, although the damage had plagued the district for decades. "The smoke and gas from some ovens destroy all vegetation around the small mining communities", noted W. J. Lauck of the U.S. Immigration Commission in 1911. Passing through the region on train, University of Wisconsin president Charles Van Hise
Charles Richard Van Hise (May 29, 1857 – November 19, 1918) was an American geologist, academic and progressive. He served as president of the University of Wisconsin (UW) in Madison, Wisconsin, from 1903 to 1918.
Early life and education
Char ...
saw "long rows of beehive ovens from which flame is bursting and dense clouds of smoke issuing, making the sky dark. By night the scene is rendered indescribably vivid by these numerous burning pits. The beehive ovens make the entire region of coke manufacture one of dulled sky: cheerless and unhealthful."[
File:Coke-Ovens---Cokedale-CO.jpg, Coal coking ovens at Cokedale, Colorado, supplied steel mills in Pueblo, CO
File:Cherry Valley Coke Ovens 3.jpg, The 200 Cherry Valley Coke Ovens built around 1866
File:Dunlap-coke-ovens-tn2.jpg, Dunlap coke ovens
File:Minersville Coke Ovens.jpg, ]Minersville Coke Ovens
Minersville Coke Ovens is a historic set of Coke (fuel), coke oven site located at Carbon Township, Huntingdon County, Pennsylvania, Carbon Township in Huntingdon County, Pennsylvania. The property includes the remains of beehive and Mitchell coke ...
File:Old coke ovens, Redstone, CO.jpg, Redstone Coke Oven Historic District
File:SydneyCokeOvenGeneralViewCa1900.jpg, Sydney Tar Ponds
Production
Industrial coke furnaces
The industrial production of coke from coal is called coking. The coal is baked in an airless kiln, a "coke furnace" or "coking oven", at temperatures as high as but usually around . This process vaporises or decomposes organic substances in the coal, driving off volatile products, including water, in the form of coal-gas and coal-tar. Coke is the non-volatile residue of the decomposition, the cemented-together carbon and mineral residue of the original coal particles in the form of a hard and somewhat glassy solid.
Some facilities have "by-product" coking ovens in which the volatile decomposition products are collected, purified and separated for use in other industries, as fuel or chemical feedstock
A raw material, also known as a feedstock, unprocessed material, or primary commodity, is a basic material that is used to produce goods, finished goods, energy, or intermediate materials that are feedstock for future finished products. As feedst ...
s. Otherwise the volatile byproducts are burned to heat the coking ovens. This is an older method, but is still being used for new construction.
Bituminous coal must meet a set of criteria for use as coking coal, determined by particular coal assay techniques. These include moisture content, ash content, sulphur
Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
content, volatile content, tar, and plasticity
Plasticity may refer to:
Science
* Plasticity (physics), in engineering and physics, the propensity of a solid material to undergo permanent deformation under load
* Neuroplasticity, in neuroscience, how entire brain structures, and the brain it ...
. This blending is targeted at producing a coke of appropriate strength (generally measured by coke strength after reaction), while losing an appropriate amount of mass. Other blending considerations include ensuring the coke doesn't swell too much during production and destroy the coke oven through excessive wall pressures.
The greater the volatile matter in coal, the more by-product can be produced. It is generally considered that levels of 26–29% of volatile matter in the coal blend are good for coking purposes. Thus different types of coal are proportionally blended to reach acceptable levels of volatility before the coking process begins. If the range of coal types is too great, the resulting coke is of widely varying strength and ash content, and is usually unsaleable, although in some cases it may be sold as an ordinary heating fuel. As the coke has lost its volatile matter, it cannot be coked again.
Coking coal is different from thermal coal, but arises from the same basic coal-forming process. Coking coal has different macerals from thermal coal, i.e. different forms of the compressed and fossilized vegetative matter that comprise the coal. The different macerals arise from different mixtures of the plant species, and variations of the conditions under which the coal has formed. Coking coal is graded according to its ash percentage-by-weight after burning:
* Steel Grade I (Ash content not exceeding 15%)
* Steel Grade II (Exceeding 15% but not exceeding 18%)
* Washery Grade I (Exceeding 18% but not exceeding 21%)
* Washery Grade II (Exceeding 21% but not exceeding 24%)
* Washery Grade III (Exceeding 24% but not exceeding 28%)
* Washery Grade IV (Exceeding 28% but not exceeding 35%)
The "hearth" process
The "hearth" process of coke-making, using lump coal, was akin to that of charcoal-burning; instead of a heap of prepared wood, covered with twigs, leaves and earth, there was a heap of coals, covered with coke dust. The hearth process continued to be used in many areas during the first half of the 19th century, but two events greatly lessened its importance. These were the invention of the hot blast in iron-smelting and the introduction of the beehive coke oven. The use of a blast of hot air, instead of cold air, in the smelting furnace was first introduced by Neilson in Scotland in 1828.[
The hearth process of making coke from coal is a very lengthy process.
]
Beehive coke oven
A fire brick chamber shaped like a dome is used, commonly known as a beehive oven. It is typically wide and high. The roof has a hole for charging the coal or other kindling from the top. The discharging hole is provided in the circumference of the lower part of the wall. In a coke oven battery, a number of ovens are built in a row with common walls between neighboring ovens. A battery consisted of a great many ovens, sometimes hundreds, in a row.
Coal is introduced from the top to produce an even layer of about deep. Air is supplied initially to ignite the coal. Carbonization starts and produces volatile matter, which burns inside the partially closed side door. Carbonization proceeds from top to bottom and is completed in two to three days. Heat is supplied by the burning volatile matter so no by-products are recovered. The exhaust gases are allowed to escape to the atmosphere. The hot coke is quenched with water and discharged, manually through the side door. The walls and roof retain enough heat to initiate carbonization of the next charge.
When coal was burned in a coke oven, the impurities of the coal not already driven off as gases accumulated to form slag, which was effectively a conglomeration of the removed impurities. Since it was not the desired coke product, slag was initially nothing more than an unwanted by-product and was discarded. Later, however, it was found to have many beneficial uses and has since been used as an ingredient in brick-making, mixed cement, granule-covered shingles, and even as a fertilizer.
Occupational safety
People can be exposed to coke oven emissions in the workplace by inhalation, skin contact, or eye contact. The Occupational Safety and Health Administration (OSHA) has set the legal limit for coke oven emissions exposure in the workplace as 0.150 mg/m3 benzene-soluble fraction over an eight-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 0.2 mg/m3 benzene-soluble fraction over an eight-hour workday.
Uses
Coke is used as a fuel
A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but ...
and as a reducing agent in smelting iron ore
Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the fo ...
in a blast furnace
A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being "forced" or supplied above atmospheric ...
. The carbon monoxide produced by combustion of coke reduces iron oxide
Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of whic ...
(hematite
Hematite (), also spelled as haematite, is a common iron oxide compound with the formula, Fe2O3 and is widely found in rocks and soils. Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of . ...
) to produce iron:
:Fe2O3 + 3CO -> 2Fe + 3CO2.
Coke is commonly used as fuel for blacksmithing.
Coke was used in Australia in the 1960s and early 1970s for house heating, and was incentivized for home use in the UK (so as to displace coal) after the 1956 Clean Air Act, which was passed in response to the Great Smog of London
The Great Smog of London, or Great Smog of 1952, was a severe air pollution event that affected London, England, in December 1952. A period of unusually cold weather, combined with an anticyclone and windless conditions, collected airborne poll ...
in 1952.
Since smoke-producing constituents are driven off during the coking of coal, coke forms a desirable fuel for stoves and furnaces in which conditions are not suitable for the complete burning of bituminous coal
Bituminous coal, or black coal, is a type of coal containing a tar-like substance called bitumen or asphalt. Its coloration can be black or sometimes dark brown; often there are well-defined bands of bright and dull material within the seams. It ...
itself. Coke may be combusted producing little or no smoke, while bituminous coal would produce much smoke. Coke was widely used as a smokeless fuel
Smokeless fuel is a type of solid fuel which either does not emit visible smoke, or emits minimal amounts, during combustion. These types of fuel are becoming increasingly popular in areas which ban the use of coal and other fuels such as unseas ...
substitute for coal in domestic heating following the creation of " smokeless zones" in the United Kingdom.
Highland Park distillery in Orkney
Orkney (; sco, Orkney; on, Orkneyjar; nrn, Orknøjar), also known as the Orkney Islands, is an archipelago in the Northern Isles of Scotland, situated off the north coast of the island of Great Britain. Orkney is 10 miles (16 km) north ...
roasts malted barley for use in their Scotch whisky
Scotch whisky (; sco, Scots whisky/whiskie, whusk(e)y; often simply called whisky or Scotch) is malt whisky or grain whisky (or a blend of the two), made in Scotland.
All Scotch whisky was originally made from malted barley. Commercial distil ...
in kilns burning a mixture of coke and peat.
Coke may be used to make synthesis gas, a mixture of carbon monoxide and hydrogen.
* Syngas
Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principly used for producing ammonia or methanol. Syngas is combustible and can be used as ...
; water gas: a mixture of carbon monoxide and hydrogen, made by passing steam over red-hot coke (or any carbon-based char). Hydrocarbonate (gas)
Water gas is a kind of fuel gas, a mixture of carbon monoxide and hydrogen. It is produced by "alternately hot blowing a fuel layer okewith air and gasifying it with steam". The caloric yield of this is about 10% of a modern syngas plant. ...
is identical, although it emerged in the late eighteenth century as an inhalation therapeutic developed by Thomas Beddoes and James Watt
James Watt (; 30 January 1736 (19 January 1736 OS) – 25 August 1819) was a Scottish inventor, mechanical engineer, and chemist who improved on Thomas Newcomen's 1712 Newcomen steam engine with his Watt steam engine in 1776, which was fun ...
categorized under factitious airs
* Producer gas
Producer gas is fuel gas that is manufactured by blowing a coke or coal with air and steam simultaneously. It mainly consists of carbon monoxide (CO), hydrogen (H2), as well as substantial amounts of nitrogen (N2). The caloric value of the produce ...
; wood gas; generator gas; synthetic gas
Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principly used for producing ammonia or methanol. Syngas is combustible and can be used as ...
: a mixture of carbon monoxide, hydrogen, and nitrogen, made by passing air over red-hot coke (or any carbon-based char)
* Coke oven gas generated from coke ovens is similar to Syngas with 60% hydrogen by volume. The hydrogen can be extracted from the coke oven gas economically for various uses (including steel production).
Phenolic byproducts
Wastewater from coking is highly toxic and carcinogenic. It contains phenolic, aromatic, heterocyclic, and polycyclic organics, and inorganics including cyanides, sulfides, ammonium and ammonia. Various methods for its treatment have been studied in recent years. The white rot fungus '' Phanerochaete chrysosporium'' can remove up to 80% of phenols from coking waste water.
Properties
The bulk specific gravity of coke is typically around 0.77. It is highly porous. Both the chemical composition and physical properties are important to the usefulness of coke in blast furnaces. In terms of composition, low ash and sulphur content are desirable. Other important characteristics are the M10, M25, and M40 test crush indexes, which convey the strength of coke during transportation into the blast furnaces; depending on blast furnaces size, finely crushed coke pieces must not be allowed into the blast furnaces because they would impede the flow of gas through the charge of iron and coke. A related characteristic is the Coke Strength After Reaction (CSR) index; it represents coke's ability to withstand the violent conditions inside the blast furnace before turning into fine particles. Pieces of coke are denoted with the following terminology: “bell coke” (30 - 80 mm), “nut coke” (10 - 30 mm), “coke breeze” (< 10 mm).
The water content in coke is practically zero at the end of the coking process, but it is often water quenched so that it can be transported to the blast furnaces. The porous structure of coke absorbs some water, usually 3–6% of its mass. In more modern coke plants an advanced method of coke cooling uses air quenching.
Bituminous coal must meet a set of criteria for use as coking coal, determined by particular coal assay techniques.
Other processes
The solid residue remaining from refinement of petroleum by the " cracking" process is also a form of coke. Petroleum coke has many uses besides being a fuel, such as the manufacture of dry cell
upLine art drawing of a dry cell: 1. brass cap, 2. plastic seal, 3. expansion space, 4. porous cardboard, 5. zinc can, 6. carbon rod, 7. chemical mixture
A dry cell is a type of electric battery, commonly used for portable electrical devices. Un ...
s and of electrolytic and welding electrodes.
Gas works manufacturing syngas
Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principly used for producing ammonia or methanol. Syngas is combustible and can be used as ...
also produce coke as an end product, called gas house coke.
Fluid coking is a process which converts heavy residual crude into lighter products such as naphtha, kerosene, heating oil
Heating oil is any petroleum product or other oil used for heating; a fuel oil. Most commonly, it refers to low viscosity grades of fuel oil used for furnaces or boilers use for home heating and in other buildings. Home heating oil is often a ...
, and hydrocarbon gases. The "fluid" term refers to the fact that solid coke particles behave as a fluid solid in the continuous fluid coking process versus the older batch delayed-coking process where a solid mass of coke builds up in the coke drum over time.
Due to a lack of oil or high-quality coals in East Germany, scientists developed a process to turn low-quality lignite
Lignite, often referred to as brown coal, is a soft, brown, combustible, sedimentary rock formed from naturally compressed peat. It has a carbon content around 25–35%, and is considered the lowest rank of coal due to its relatively low heat ...
into coke called high temperature lignite coke
High temperature lignite coke (BHT coke) is a carbon-rich fuel that is produced from lignite by exposure to heat in the absence of oxygen (''pyrolysis'').
History
Because East German industry urgently needed coke after the Second World War and ...
.
See also
* Charcoal
Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, cal ...
, made from wood rather than coal
* History of manufactured gas
* List of CO2 emitted per million Btu of energy from various fuels
* Petroleum coke
* Pyrolysis
* Sydney Tar Ponds, environmental damage caused by coke oven
* Tar
References
{{Authority control
Coal
Coking works
Fuels
Chinese inventions
Solid fuels
Industrial Revolution
Allotropes of carbon
Coke ovens