HOME

TheInfoList



OR:

The Coandă effect ( or ) is the tendency of a fluid jet to stay attached to a convex surface. ''
Merriam-Webster Merriam-Webster, Inc. is an American company that publishes reference books and is especially known for its dictionaries. It is the oldest dictionary publisher in the United States. In 1831, George and Charles Merriam founded the company as ...
'' describes it as "the tendency of a jet of fluid emerging from an orifice to follow an adjacent flat or curved surface and to entrain fluid from the surroundings so that a region of lower pressure develops." It is named after Romanian inventor Henri Coandă, who was the first to recognize the practical application of the phenomenon in aircraft design around 1910. It was first documented explicitly in two patents issued in 1936.


Discovery

An early description of this phenomenon was provided by Thomas Young in a lecture given to
The Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, r ...
in 1800: A hundred years later, Henri Coandă identified an application of the effect during experiments with his
Coandă-1910 The Coandă-1910, designed by Romanian inventor Henri Coandă, was an unconventional sesquiplane aircraft powered by a ducted fan. Called the "turbo-propulseur" by Coandă, its experimental engine consisted of a conventional piston engine driv ...
aircraft, which mounted an unusual engine he designed. The motor-driven turbine pushed hot air rearward, and Coandă noticed that the airflow was attracted to nearby surfaces. In 1934 Coandă obtained a
patent A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an sufficiency of disclosure, enabling disclo ...
in France for a "method and apparatus for deviation of a fluid into another fluid". The effect was described as the "deviation of a plain jet of a fluid that penetrates another fluid in the vicinity of a convex wall". The first official documents that explicitly mention the Coandă effect were two 1936 patents by Henri Coandă. This name was accepted by the leading aerodynamicist Theodore von Kármán, who had a long scientific relationship with Coandă on aerodynamics problems.


Mechanism

A free jet of air entrains molecules of air from its immediate surroundings causing an
axisymmetrical Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which i ...
"tube" or "sleeve" of low pressure around the jet (see Diagram 1). The resultant forces from this low pressure tube end up balancing any perpendicular flow instability, which stabilises the jet in a straight line. However, if a solid surface is placed close, and approximately parallel to the jet (Diagram 2), then the entrainment (and therefore removal) of air from between the solid surface and the jet causes a reduction in air pressure on that side of the jet that cannot be balanced as rapidly as the low pressure region on the "open" side of the jet. The pressure difference across the jet causes the jet to deviate towards the nearby surface, and then to adhere to it (Diagram 3).Coanda Effect
Retrieved 17 November 2017
The jet adheres even better to curved surfaces (Diagram 4), because each (infinitesimally small) incremental change in direction of the surface brings about the effects described for the initial bending of the jet towards the surface. If the surface is not too sharply curved, the jet can, under the right circumstances, adhere to the surface even after flowing 180° around a cylindrically curved surface, and thus travel in a direction opposite to its initial direction. The forces that cause these changes in the direction of flow of the jet cause an equal and opposite force on the surface along which the jet flows. These Coandă effect induced forces can be harnessed to cause lift and other forms of motion, depending on the orientation of the jet and the surface to which the jet adheres. A small "lip" on the surface at the point where the jet starts to flow over that surface (Diagram 5) enhances the initial deviation of the direction of flow of the jet, and it subsequently adheres to the surface. This results from the fact that a low pressure vortex forms behind the lip, promoting the dip of the jet towards the surface. The Coandă effect can be induced in any fluid, and is therefore equally effective in water as in air. A heated airfoil significantly reduces drag.


Conditions of existence

Early sources provide information, both theoretical and experimental, needed to derive by comparison a detailed explanation of the Coandă effect and its limits. Coandă effect may occur along a curved wall either in a ''free jet'' or a ''wall jet''. On the left image of the preceding section: "The mechanism of Coanda effect", the effect as described, in the terms of T. Young as "the lateral pressure which eases the inflection of a current of air near an obstacle", represents a ''free jet'' emerging from an orifice and an obstacle in the surroundings. It includes the tendency of a free jet emerging from an orifice to entrain fluid from the surroundings confined with limited access, without developing any region of lower pressure when there is no obstacle in the surroundings, as is the case on the opposite side where turbulent mixing occurs at ambient pressure. On the right image, the effect occurs along the curved wall as a ''wall jet''. The image here on the right represents a ''two dimensional wall jet'' between two parallel plane walls, where the "obstacle" is a quarter cylindrical portion following the flat horizontal rectangular orifice, so that no fluid at all is entrained from the surroundings along the wall, but only on the opposite side in turbulent mixing with ambient air.


Wall jet

To compare experiment with a theoretical model, a two-dimensional plane wall jet of width () along a circular wall of radius (') is referred to. A wall jet follows a flat horizontal wall, say of infinite radius, or rather whose radius is the radius of the Earth without separation because the surface pressure as well as the external pressure in the mixing zone is everywhere equal to the atmospheric pressure and the boundary layer does not separate from the wall. With a much smaller radius (12 centimeters in the image on the right) a transverse difference arises between external and wall surface pressures of the jet, creating a pressure gradient depending upon , the relative curvature. This pressure gradient can appear in a zone before and after the origin of the jet where it gradually arises, and disappear at the point where the jet boundary layer separates from the wall, where the wall pressure reaches atmospheric pressure (and the transverse gradient becomes zero). Experiments made in 1956 with turbulent air jets at a Reynolds number of 106 at various jet widths () show the pressures measured along a circularly curved wall radius () at a series of horizontal distance from the origin of the jet (see the diagram on the right). Above a critical ratio of 0.5 only local effects at the origin of the jet are seen extending over a small angle of 18° along the curved wall. The jet then immediately separates from the curved wall. A Coandă effect is therefore not seen here but only a local attachment: a pressure smaller than atmospheric pressure appears on the wall along a distance corresponding to a small angle of 9°, followed by an equal angle of 9° where this pressure increases up to atmospheric pressure at the separation of the boundary layer, subject to this positive longitudinal gradient. However, if the ratio is smaller than the critical value of 0.5, the lower than ambient pressure measured on the wall seen at the origin of the jet continues along the wall (until the wall ends; see diagram on the right). This is "a true Coandă effect" as the jet clings to the wall "at a nearly constant pressure" as in a conventional wall jet. A calculation made by Woods in 1954 of an inviscid flow along a circular wall shows that an inviscid solution exists with any curvature and any given deflection angle up to a separation point on the wall, where a singular point appears with an infinite slope of the surface pressure curve. Introducing in the calculation the angle at separation found in the preceding experiments for each value of the relative curvature , the image here was recently obtained, and shows inertial effects represented by the inviscid solution: the calculated pressure field is similar to the experimental one described above, outside the nozzle. The flow curvature is caused exclusively by the transverse pressure gradient, as described by T. Young. Then, viscosity only produces a boundary layer along the wall and turbulent mixing with ambient air as in a conventional wall jet—except that this boundary layer separates under the action of the difference between the finally ambient pressure and a smaller surface pressure along the wall. According to Van Dyke, as quoted in
Lift Lift or LIFT may refer to: Physical devices * Elevator, or lift, a device used for raising and lowering people or goods ** Paternoster lift, a type of lift using a continuous chain of cars which do not stop ** Patient lift, or Hoyer lift, mobile ...
, the derivation of his equation (4c) also shows that the contribution of viscous stress to flow turning is negligible. An alternative way would be to calculate the deflection angle at which the boundary layer subjected to the inviscid pressure field separates. A rough calculation has been tried that gives the separation angle as a function of and the Reynolds number: The results are reported on the image, e.g., 54° calculated instead of 60° measured for = 0.25. More experiments and a more accurate boundary layer calculation would be desirable. Other experiments made in 2004 with a wall jet along a circular wall show that Coandă effect does not occur in a laminar flow, and the critical ratios for small Reynolds numbers are much smaller than those for turbulent flow. down to = 0.14 with a Reynolds number of 500, and = 0.05 for a Reynolds number of 100.


Free jet

L. C. Woods also made the calculation of the inviscid two-dimensional flow of a free jet of width h, deflected round a circularly cylindrical surface of radius r, between a first contact A and separation at B, including a deflection angle . Again a solution exists for any value of the relative curvature and angle . Moreover, in the case of a free jet the equation can be solved in closed form, giving the distribution of velocity along the circular wall. The surface pressure distribution is then calculated using Bernoulli equation. Let us note the pressure () and the velocity () along the free streamline at the ambient pressure, and the angle along the wall which is zero in A and in B. Then the velocity () is found to be: :\frac = \exp\left(\frac \arctan \sqrt\,\right) An image of the surface pressure distribution of the jet round the cylindrical surface using the same values of the relative curvature , and the same angle as those found for the wall jet reported in the image on the right side here has been established: it may be found in reference (15) p. 104 and both images are quite similar: the Coandă effect of a free jet is inertial, the same as Coandă effect of a wall jet. However, an experimental measurement of the corresponding surface pressure distribution is not known. Experiments in 1959 by Bourque and Newmann concerning the reattachment of a two-dimensional turbulent jet to an offset parallel plate after enclosing a separation bubble where a low pressure vortex is confined (as in the image 5 in the preceding section) and also for a two-dimensional jet followed by a single flat plate inclined at an angle instead of the circularly curved wall in the diagram on the right here describing the experience of a wall jet: the jet separates from the plate, then curves towards the plate when the surrounding fluid is entrained and pressure lowered, and eventually reattaches to it, enclosing a separation bubble. The jet remains free if the angle is greater than 62°. In this last case which is the geometry proposed by Coandă, the claim of the inventor is that the quantity of fluid entrained by the jet from the surroundings is increased when the jet is deflected, a feature exploited to improve the scavenging of internal combustion engines, and to increase the maximum lift coefficient of a wing, as indicated in the applications below. The surface pressure distribution as well as the reattachment distance have been duly measured in both cases, and two approximate theories have been developed for the mean pressure within the separation bubble, the position of reattachment and the increase in volume flow from the orifice: the agreement with experiment was satisfactory.


Applications

The Coandă effect has applications in various high-lift devices on
aircraft An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. ...
, where air moving over the wing can be "bent down" towards the ground using flaps and a jet sheet blowing over the curved surface of the top of the wing. The bending of the flow results in aerodynamic lift. The flow from a high-speed jet engine mounted in a
pod Pod or POD may refer to: Biology * Pod (fruit), a type of fruit of a flowering plant * Husk or pod of a legume * Pod of whales or other marine mammals * "-pod", a suffix meaning "foot" used in taxonomy Electronics and computing * Proper ort ...
over the wing produces increased lift by dramatically increasing the velocity gradient in the shear flow in the boundary layer. In this velocity gradient, particles are blown away from the surface, thus lowering the pressure there. Closely following the work of Coandă on applications of his research, and in particular the work on his "Aerodina Lenticulară," John Frost of
Avro Canada Avro Canada was a Canadian aircraft manufacturing company. It was founded in 1945 as an aircraft plant and within 13 years became the third-largest company in Canada, one of the largest 100 companies in the world, and directly employing over 5 ...
also spent considerable time researching the effect, leading to a series of "inside out"
hovercraft A hovercraft, also known as an air-cushion vehicle or ACV, is an amphibious craft capable of travelling over land, water, mud, ice, and other surfaces. Hovercraft use blowers to produce a large volume of air below the hull, or air cushion, ...
-like aircraft from which the air exited in a ring around the outside of the aircraft and was directed by being "attached" to a flap-like ring. This is, as opposed to a traditional hovercraft design, in which the air is blown into a central area, the ''plenum'', and directed down with the use of a fabric "skirt". Only one of Frost's designs was ever built, the
Avro Canada VZ-9 Avrocar The Avro Canada VZ-9 Avrocar was a VTOL aircraft developed by Avro Canada as part of a secret U.S. military project carried out in the early years of the Cold War. The Avrocar intended to exploit the Coandă effect to provide lift and thrust ...
. The Avrocar (often listed as 'VZ-9') was a Canadian vertical takeoff and landing (VTOL) aircraft developed by Avro Aircraft Ltd. as part of a secret United States military project carried out in the early years of the Cold War. The Avrocar intended to exploit the Coandă effect to provide lift and thrust from a single "turborotor" blowing exhaust out the rim of the disk-shaped aircraft to provide anticipated VTOL-like performance. In the air, it would have resembled a
flying saucer A flying saucer (also referred to as "a flying disc") is a descriptive term for a type of flying craft having a disc or saucer-shaped body, commonly used generically to refer to an anomalous flying object. The term was coined in 1947 but has g ...
. Two prototypes were built as "proof-of-concept" test vehicles for a more advanced U.S. Air Force fighter and also for a U.S. Army tactical combat aircraft requirement.Milberry 1979, p. 137. Avro's 1956 Project 1794 for the U.S. military designed a larger-scale flying saucer based on the Coandă effect and intended to reach speeds between Mach 3 and Mach 4. Project documents remained classified until 2012. The effect was also implemented during the.S. Air Force's
Advanced Medium STOL Transport The Advanced Medium STOL Transport (AMST) project was intended to replace the Lockheed C-130 Hercules tactical transport in United States Air Force service with a new aircraft with improved STOL performance. Increased need for strategic airlift ...
(AMST) project. Several aircraft, notably the
Boeing The Boeing Company () is an American multinational corporation that designs, manufactures, and sells airplanes, rotorcraft, rockets, satellites, telecommunications equipment, and missiles worldwide. The company also provides leasing and ...
YC-14 (the first modern type to exploit the effect), NASA's Quiet Short-Haul Research Aircraft, and the National Aerospace Laboratory of Japan's Asuka research aircraft have been built to take advantage of this effect, by mounting
turbofan The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the ''turbo'' portion refers to a gas turbine engine which achieves mechanical ...
s on the top of the wings to provide high-speed air even at low flying speeds, but to date only one aircraft has gone into production using this system to a major degree, the
Antonov Antonov State Enterprise ( uk, Державне підприємство «Антонов»), formerly the Aeronautical Scientific-Technical Complex named after Antonov (Antonov ASTC) ( uk, Авіаційний науково-технічни� ...
An-72 "Coaler." The Shin Meiwa US-1A flying boat utilizes a similar system, only it directs the propwash from its four turboprop engines over the top of the wing to generate low-speed lift. More uniquely, it incorporates a fifth turboshaft engine inside of the wing center-section solely to provide air for powerful blown flaps. The addition of these two systems gives the aircraft an impressive STOL capability. The experimental McDonnell Douglas YC-15 and its production derivative, the Boeing
C-17 Globemaster III The McDonnell Douglas/Boeing C-17 Globemaster III is a large military transport aircraft that was developed for the United States Air Force (USAF) from the 1980s to the early 1990s by McDonnell Douglas. The C-17 carries forward the name of tw ...
, also employ the effect. The NOTAR helicopter replaces the conventional
propeller A propeller (colloquially often called a screw if on a ship or an airscrew if on an aircraft) is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral which, when rotated, exerts linear thrust upon ...
tail rotor with a Coandă effect tail (diagram on the left). A better understanding of Coandă effect was provided by the scientific literature produced by ACHEON EU FP7 project. This project utilized a particular symmetric nozzle to produce an effective modeling of the Coandă effect, and determined innovative STOL aircraft configurations based on the effect. This activity has been expanded by Dragan in the turbomachinery sector, with the objective of better optimizing the shape of rotating blades by Romanian Comoti Research Centre's work on turbomachinery. A practical use of the Coandă effect is for inclined
hydropower Hydropower (from el, ὕδωρ, "water"), also known as water power, is the use of falling or fast-running water to produce electricity or to power machines. This is achieved by converting the gravitational potential or kinetic energy of ...
screens, which separate debris, fish, etc., otherwise in the input flow to the turbines. Due to the slope, the debris falls from the screens without mechanical clearing, and due to the wires of the screen optimizing the Coandă effect, the water flows through the screen to the
penstock A penstock is a sluice or gate or intake structure that controls water flow, or an enclosed pipe that delivers water to hydro turbines and sewerage systems. The term is inherited from the earlier technology of mill ponds and watermills. ...
s leading the water to the turbines. The Coandă effect is used in dual-pattern fluid dispensers in automobile windshield washers. The operation principle of oscillatory flowmeters also relies on the Coandă phenomenon. The incoming liquid enters a chamber that contains two "islands". Due to the Coandă effect, the main stream splits up and goes under one of the islands. This flow then feeds itself back into the main stream making it split up again, but in the direction of the second isle. This process repeats itself as long as the liquid circulates the chamber, resulting in a self-induced oscillation that is directly proportional to the velocity of the liquid and consequently the volume of substance flowing through the meter. A sensor picks up the frequency of this oscillation and transforms it into an analog signal yielding volume passing through. In
air conditioning Air conditioning, often abbreviated as A/C or AC, is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as 'comfort cooling') and in some cases also strictly controlling ...
, the Coandă effect is exploited to increase the throw of a ceiling mounted diffuser. Because the Coandă effect causes air discharged from the diffuser to "stick" to the ceiling, it travels farther before dropping for the same discharge velocity than it would if the diffuser were mounted in free air, without the neighbouring ceiling. Lower discharge velocity means lower noise levels and, in the case of variable air volume (VAV) air conditioning systems, permits greater
turndown ratio Turndown ratio refers to the width of the operational range of a device, and is defined as the ratio of the maximum capacity to minimum capacity. For example, a device with a maximum output of 10 units and a minimum output of 2 units has a turndown ...
s.
Linear diffuser Linearity is the property of a mathematical relationship ('' function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear ...
s and slot diffusers that present a greater length of contact with the ceiling exhibit a greater Coandă effect. In
cardiovascular medicine Cardiology () is a branch of medicine that deals with disorders of the heart and the cardiovascular system. The field includes medical diagnosis and treatment of congenital heart defects, coronary artery disease, heart failure, valvular he ...
, the Coandă effect accounts for the separate streams of blood in the fetal right atrium. It also explains why eccentric
mitral regurgitation Mitral regurgitation (MR), also known as mitral insufficiency or mitral incompetence, is a form of valvular heart disease in which the mitral valve is insufficient and does not close properly when the heart pumps out blood. Section: Valvular Hea ...
jets are attracted and dispersed along adjacent left atrial wall surfaces (so called "wall-hugging jets" as seen on echocardiographic color-doppler interrogation). This is clinically relevant because the visual area (and thus severity) of these eccentric wall-hugging jets is often underestimated compared to the more readily apparent central jets. In these cases, volumetric methods such as the proximal isovelocity surface area (PISA) method are preferred to quantify the severity of
mitral regurgitation Mitral regurgitation (MR), also known as mitral insufficiency or mitral incompetence, is a form of valvular heart disease in which the mitral valve is insufficient and does not close properly when the heart pumps out blood. Section: Valvular Hea ...
. In medicine, the Coandă effect is used in ventilators. In
meteorology Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did no ...
, the Coandă effect theory has also been applied to some air streams flowing out of mountain ranges such as the Carpathian Mountains and Transylvanian Alps, where effects on agriculture and vegetation have been noted. It also appears to be an effect in the Rhone Valley in France and near Big Delta in Alaska. In
Formula One Formula One (also known as Formula 1 or F1) is the highest class of international racing for open-wheel single-seater formula racing cars sanctioned by the Fédération Internationale de l'Automobile (FIA). The World Drivers' Championship ...
automobile racing, the Coandă effect has been exploited by the McLaren, Sauber, Ferrari and Lotus teams, after the first introduction by Adrian Newey (Red Bull Team) in 2011, to help redirect exhaust gases to run through the rear diffuser with the intention of increasing downforce at the rear of the car. Due to changes in regulations set in place by the FIA from the beginning of the 2014 Formula One season, the intention of redirecting exhaust gases to use the Coandă effect have been negated, due to the mandatory requirement that the car exhaust not have bodywork intended to contribute to aerodynamic effect situated directly behind it. In
fluidics Fluidics, or fluidic logic, is the use of a fluid to perform analog or digital operations similar to those performed with electronics. The physical basis of fluidics is pneumatics and hydraulics, based on the theoretical foundation of fluid dyn ...
, the Coandă effect was used to build bistable multivibrators, where the working stream (compressed air) stuck to one curved wall or another and control beams could switch the stream between the walls. The Coandă effect is also used to mix two different fluids in a Coandă effect mixer.


Practical demonstration

The Coandă effect can be demonstrated by directing a small jet of air upwards at an angle over a ping pong ball. The jet is drawn to and follows the upper surface of the ball curving around it, due to the (radial) acceleration (slowing and turning) of the air around the ball. With enough airflow, this change in
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
is balanced by the equal and opposite force on the ball supporting its weight. This demonstration can be performed using a hairdryer on the lowest setting or a vacuum cleaner if the outlet can be attached to the pipe and aimed upwards at an angle. A common misconception is that the Coandă effect is demonstrated when a stream of tap water flows over the back of a spoon held lightly in the stream and the spoon is pulled into the stream (for example, uses the Coandă effect to explain the deflection of water around a cylinder). While the flow looks very similar to the air flow over the ping pong ball above (if one could see the air flow), the cause is not really the Coandă effect. Here, because it is a flow of water into air, there is little entrainment of the surrounding fluid (the air) into the jet (the stream of water). This particular demonstration is dominated by surface tension. ( states that the water deflection "actually demonstrates molecular attraction and surface tension.") Another demonstration is to direct the air flow from, e.g., a vacuum cleaner operating in reverse, tangentially past a round cylinder. A waste basket works well. The air flow seems to "wrap around" the cylinder and can be detected at more than 180° from the incoming flow. Under the right conditions, flow rate, weight of the cylinder, smoothness of the surface it sits on, the cylinder actually moves. Note that the cylinder does not move directly into the flow as a misapplication of the Bernoulli effect would predict, but at a diagonal. The Coandă effect can also be demonstrated by placing a can in front of a lit candle, such that when one's line of sight is along the top of the can, the candle flame is completely hidden from view behind it. If one then blows directly at the can, the candle will be extinguished despite the can being "in the way". This is because the airflow directed at the can bends ''around'' it and still reaches the candle to extinguish it, in accordance with the Coandă effect.


Problems caused

The engineering use of Coandă effect has disadvantages as well as advantages. In marine propulsion, the efficiency of a
propeller A propeller (colloquially often called a screw if on a ship or an airscrew if on an aircraft) is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral which, when rotated, exerts linear thrust upon ...
or
thruster Thruster may refer to: Propulsion devices A thruster is a propulsive device used by spacecraft and watercraft for station keeping, attitude control, in the reaction control system, or long-duration, low-thrust acceleration. * Reaction eng ...
can be severely curtailed by the Coandă effect. The force on the vessel generated by a propeller is a function of the speed, volume and direction of the water jet leaving the propeller. Under certain conditions (e.g., when a ship moves through water) the Coandă effect changes the direction of a propeller jet, causing it to follow the shape of the ship's
hull Hull may refer to: Structures * Chassis, of an armored fighting vehicle * Fuselage, of an aircraft * Hull (botany), the outer covering of seeds * Hull (watercraft), the body or frame of a ship * Submarine hull Mathematics * Affine hull, in affi ...
. The side force from a tunnel thruster at the bow of a ship decreases rapidly with forward speed. The side thrust may completely disappear at speeds above about 3 knots. If the Coandă effect is applied to symmetrically shaped nozzles, it presents resonation problems. Those problems and how different spins couple have been analyzed in depth.


See also

*
Aerodynamics Aerodynamics, from grc, ἀήρ ''aero'' (air) + grc, δυναμική (dynamics), is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dyn ...
*
Airfoil An airfoil (American English) or aerofoil (British English) is the cross-sectional shape of an object whose motion through a gas is capable of generating significant lift, such as a wing, a sail, or the blades of propeller, rotor, or tur ...
*
Boundary layer In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary cond ...
* Circulation control wing *
Fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including '' aerodynamics'' (the study of air and other gases in motion) ...
*
Fluid friction In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force acting opposite to the relative motion of any object moving with respect to a surrounding flu ...
*
Lift (force) A fluid flowing around an object exerts a force on it. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the force parallel to the flow direct ...
*
Magnus effect The Magnus effect is an observable phenomenon commonly associated with a spinning object moving through a fluid. The path of the spinning object is deflected in a manner not present when the object is not spinning. The deflection can be ex ...
*
Microelectromechanical systems Microelectromechanical systems (MEMS), also written as micro-electro-mechanical systems (or microelectronic and microelectromechanical systems) and the related micromechatronics and microsystems constitute the technology of microscopic devices, ...
* Microfluidics * NOTAR *
Tesla valve A Tesla valve, called a valvular conduit by its inventor, is a fixed-geometry passive check valve. It allows a fluid to flow preferentially in one direction, without moving parts. The device is named after Nikola Tesla, who was awarded in 1920 ...
* Trench effect


References


Notes


Citations


Sources

* * * * * * * * * * * * * * *


External links


''Flight'' 1945



Coandă effect video (2)

Information on the patents of Coandă



Report on the Coandă Effect and lift

How to see the Coandă effect at home
(www.physics.org comic) {{DEFAULTSORT:Coanda Effect Aerodynamics Boundary layers Microfluidics Physical phenomena Romanian inventions Effect