HOME

TheInfoList



OR:

In mathematics, the classification of the finite
simple group SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The da ...
s is a result of
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
stating that every
finite simple group Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked ...
is either cyclic, or
alternating Alternating may refer to: Mathematics * Alternating algebra, an algebra in which odd-grade elements square to zero * Alternating form, a function formula in algebra * Alternating group, the group of even permutations of a finite set * Alter ...
, or it belongs to a broad infinite class called the
groups of Lie type In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phr ...
, or else it is one of twenty-six or twenty-seven exceptions, called
sporadic In mathematics, a sporadic group is one of the 26 exceptional groups found in the classification of finite simple groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. Th ...
. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
s are the basic building blocks of the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s. The
Jordan–Hölder theorem In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many natu ...
is a more precise way of stating this fact about finite groups. However, a significant difference from integer factorization is that such "building blocks" do not necessarily determine a unique group, since there might be many non- isomorphic groups with the same
composition series In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many natu ...
or, put in another way, the extension problem does not have a unique solution.
Gorenstein Gorenstein may refer to: * Daniel Gorenstein (1923–1992), American mathematician, known for **Alperin–Brauer–Gorenstein theorem **Gorenstein–Harada theorem **Gorenstein ring **Gorenstein scheme **Gorenstein–Walter theorem * Eli Gorenstein ...
(d.1992), Lyons, and Solomon are gradually publishing a simplified and revised version of the proof.


Statement of the classification theorem

The classification theorem has applications in many branches of mathematics, as questions about the structure of finite groups (and their action on other mathematical objects) can sometimes be reduced to questions about finite simple groups. Thanks to the classification theorem, such questions can sometimes be answered by checking each family of simple groups and each sporadic group. Daniel Gorenstein announced in 1983 that the finite simple groups had all been classified, but this was premature as he had been misinformed about the proof of the classification of
quasithin group In mathematics, a quasithin group is a finite simple group that resembles a group of Lie type of rank at most 2 over a field of characteristic 2. More precisely it is a finite simple group of characteristic 2 type and width 2. Here characterist ...
s. The completed proof of the classification was announced by after Aschbacher and Smith published a 1221-page proof for the missing quasithin case.


Overview of the proof of the classification theorem

wrote two volumes outlining the low rank and odd characteristic part of the proof, and wrote a 3rd volume covering the remaining characteristic 2 case. The proof can be broken up into several major pieces as follows:


Groups of small 2-rank

The simple groups of low 2-rank are mostly groups of Lie type of small rank over fields of odd characteristic, together with five alternating and seven characteristic 2 type and nine sporadic groups. The simple groups of small 2-rank include: *Groups of 2-rank 0, in other words groups of odd order, which are all solvable by the
Feit–Thompson theorem In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by . History conjectured that every nonabelian finite simple group has even order. suggested using ...
. *Groups of 2-rank 1. The Sylow 2-subgroups are either cyclic, which is easy to handle using the transfer map, or generalized
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quat ...
, which are handled with the
Brauer–Suzuki theorem In mathematics, the Brauer–Suzuki theorem, proved by , , , states that if a finite group has a generalized quaternion Sylow 2-subgroup and no non-trivial normal subgroups of odd order Order, ORDER or Orders may refer to: * Categorization, ...
: in particular there are no simple groups of 2-rank 1 except for the cyclic group of order two. *Groups of 2-rank 2. Alperin showed that the Sylow subgroup must be dihedral, quasidihedral, wreathed, or a Sylow 2-subgroup of ''U''3(4). The first case was done by the
Gorenstein–Walter theorem In mathematics, the Gorenstein–Walter theorem, proved by , states that if a finite group ''G'' has a dihedral Sylow 2-subgroup, and ''O''(''G'') is the maximal normal subgroup of odd order, then ''G''/''O''(''G'') is isomorphic to a 2-group, ...
which showed that the only simple groups are isomorphic to ''L''2(''q'') for ''q'' odd or ''A''7, the second and third cases were done by the
Alperin–Brauer–Gorenstein theorem In mathematics, the Alperin–Brauer–Gorenstein theorem characterizes the finite simple groups with quasidihedral or wreathedA 2-group is wreathed if it is a nonabelian semidirect product of a maximal subgroup that is a direct product of two cy ...
which implies that the only simple groups are isomorphic to ''L''3(''q'') or ''U''3(''q'') for ''q'' odd or ''M''11, and the last case was done by Lyons who showed that ''U''3(4) is the only simple possibility. *Groups of sectional 2-rank at most 4, classified by the Gorenstein–Harada theorem. The classification of groups of small 2-rank, especially ranks at most 2, makes heavy use of ordinary and modular character theory, which is almost never directly used elsewhere in the classification. All groups not of small 2 rank can be split into two major classes: groups of component type and groups of characteristic 2 type. This is because if a group has sectional 2-rank at least 5 then MacWilliams showed that its Sylow 2-subgroups are connected, and the balance theorem implies that any simple group with connected Sylow 2-subgroups is either of component type or characteristic 2 type. (For groups of low 2-rank the proof of this breaks down, because theorems such as the
signalizer functor In mathematics, a signalizer functor gives the intersections of a potential subgroup of a finite group with the centralizers of nontrivial elements of an abelian group. The signalizer functor theorem gives conditions under which a signalizer functo ...
theorem only work for groups with elementary abelian subgroups of rank at least 3.)


Groups of component type

A group is said to be of component type if for some centralizer ''C'' of an involution, ''C''/''O''(''C'') has a component (where ''O''(''C'') is the core of ''C'', the maximal normal subgroup of odd order). These are more or less the groups of Lie type of odd characteristic of large rank, and alternating groups, together with some sporadic groups. A major step in this case is to eliminate the obstruction of the core of an involution. This is accomplished by the
B-theorem The B-theorem is a mathematical finite group theory result formerly known as the B-conjecture. The theorem states that if C is the centralizer of an involution of a finite group, then every component of C/O(C) is the image of a component o ...
, which states that every component of ''C''/''O''(''C'') is the image of a component of ''C''. The idea is that these groups have a centralizer of an involution with a component that is a smaller quasisimple group, which can be assumed to be already known by induction. So to classify these groups one takes every central extension of every known finite simple group, and finds all simple groups with a centralizer of involution with this as a component. This gives a rather large number of different cases to check: there are not only 26 sporadic groups and 16 families of groups of Lie type and the alternating groups, but also many of the groups of small rank or over small fields behave differently from the general case and have to be treated separately, and the groups of Lie type of even and odd characteristic are also quite different.


Groups of characteristic 2 type

A group is of characteristic 2 type if the
generalized Fitting subgroup In mathematics, especially in the area of algebra known as group theory, the Fitting subgroup ''F'' of a finite group ''G'', named after Hans Fitting, is the unique largest normal nilpotent subgroup of ''G''. Intuitively, it represents the small ...
''F''*(''Y'') of every 2-local subgroup ''Y'' is a 2-group. As the name suggests these are roughly the groups of Lie type over fields of characteristic 2, plus a handful of others that are alternating or sporadic or of odd characteristic. Their classification is divided into the small and large rank cases, where the rank is the largest rank of an odd abelian subgroup normalizing a nontrivial 2-subgroup, which is often (but not always) the same as the rank of a Cartan subalgebra when the group is a group of Lie type in characteristic 2. The rank 1 groups are the thin groups, classified by Aschbacher, and the rank 2 ones are the notorious
quasithin group In mathematics, a quasithin group is a finite simple group that resembles a group of Lie type of rank at most 2 over a field of characteristic 2. More precisely it is a finite simple group of characteristic 2 type and width 2. Here characterist ...
s, classified by Aschbacher and Smith. These correspond roughly to groups of Lie type of ranks 1 or 2 over fields of characteristic 2. Groups of rank at least 3 are further subdivided into 3 classes by the trichotomy theorem, proved by Aschbacher for rank 3 and by Gorenstein and Lyons for rank at least 4. The three classes are groups of GF(2) type (classified mainly by Timmesfeld), groups of "standard type" for some odd prime (classified by the Gilman–Griess theorem and work by several others), and groups of uniqueness type, where a result of Aschbacher implies that there are no simple groups. The general higher rank case consists mostly of the groups of Lie type over fields of characteristic 2 of rank at least 3 or 4.


Existence and uniqueness of the simple groups

The main part of the classification produces a characterization of each simple group. It is then necessary to check that there exists a simple group for each characterization and that it is unique. This gives a large number of separate problems; for example, the original proofs of existence and uniqueness of the
monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order    2463205976112133171923293141475 ...
totaled about 200 pages, and the identification of the Ree groups by Thompson and Bombieri was one of the hardest parts of the classification. Many of the existence proofs and some of the uniqueness proofs for the sporadic groups originally used computer calculations, most of which have since been replaced by shorter hand proofs.


History of the proof


Gorenstein's program

In 1972 announced a program for completing the classification of finite simple groups, consisting of the following 16 steps: # Groups of low 2-rank. This was essentially done by Gorenstein and Harada, who classified the groups with sectional 2-rank at most 4. Most of the cases of 2-rank at most 2 had been done by the time Gorenstein announced his program. # The semisimplicity of 2-layers. The problem is to prove that the 2-layer of the centralizer of an involution in a simple group is semisimple. # Standard form in odd characteristic. If a group has an involution with a 2-component that is a group of Lie type of odd characteristic, the goal is to show that it has a centralizer of involution in "standard form" meaning that a centralizer of involution has a component that is of Lie type in odd characteristic and also has a centralizer of 2-rank 1. # Classification of groups of odd type. The problem is to show that if a group has a centralizer of involution in "standard form" then it is a group of Lie type of odd characteristic. This was solved by Aschbacher's classical involution theorem. # Quasi-standard form # Central involutions # Classification of alternating groups. # Some sporadic groups # Thin groups. The simple thin finite groups, those with 2-local ''p''-rank at most 1 for odd primes ''p'', were classified by Aschbacher in 1978 # Groups with a strongly p-embedded subgroup for ''p'' odd # The signalizer functor method for odd primes. The main problem is to prove a
signalizer functor In mathematics, a signalizer functor gives the intersections of a potential subgroup of a finite group with the centralizers of nontrivial elements of an abelian group. The signalizer functor theorem gives conditions under which a signalizer functo ...
theorem for nonsolvable signalizer functors. This was solved by McBride in 1982. # Groups of characteristic ''p'' type. This is the problem of groups with a strongly ''p''-embedded 2-local subgroup with ''p'' odd, which was handled by Aschbacher. # Quasithin groups. A
quasithin group In mathematics, a quasithin group is a finite simple group that resembles a group of Lie type of rank at most 2 over a field of characteristic 2. More precisely it is a finite simple group of characteristic 2 type and width 2. Here characterist ...
is one whose 2-local subgroups have ''p''-rank at most 2 for all odd primes ''p'', and the problem is to classify the simple ones of characteristic 2 type. This was completed by Aschbacher and Smith in 2004. # Groups of low 2-local 3-rank. This was essentially solved by Aschbacher's trichotomy theorem for groups with ''e''(''G'')=3. The main change is that 2-local 3-rank is replaced by 2-local ''p''-rank for odd primes. # Centralizers of 3-elements in standard form. This was essentially done by the Trichotomy theorem. # Classification of simple groups of characteristic 2 type. This was handled by the Gilman–Griess theorem, with 3-elements replaced by ''p''-elements for odd primes.


Timeline of the proof

Many of the items in the list below are taken from . The date given is usually the publication date of the complete proof of a result, which is sometimes several years later than the proof or first announcement of the result, so some of the items appear in the "wrong" order.


Second-generation classification

The proof of the theorem, as it stood around 1985 or so, can be called ''first generation''. Because of the extreme length of the first generation proof, much effort has been devoted to finding a simpler proof, called a second-generation classification proof. This effort, called "revisionism", was originally led by Daniel Gorenstein. , nine volumes of the second generation proof have been published (Gorenstein, Lyons & Solomon 1994, 1996, 1998, 1999, 2002, 2005, 2018a, 2018b, 2021). In 2012 Solomon estimated that the project would need another 5 volumes, but said that progress on them was slow. It is estimated that the new proof will eventually fill approximately 5,000 pages. (This length stems in part from the second generation proof being written in a more relaxed style.) However, with the publication of volume 9 of the GLS series, and including the Aschbacher–Smith contribution, this estimate was already reached, with several more volumes still in preparation (the rest of what was originally intended for volume 9, plus projected volumes 10 and 11). Aschbacher and Smith wrote their two volumes devoted to the quasithin case in such a way that those volumes can be part of the second generation proof. Gorenstein and his collaborators have given several reasons why a simpler proof is possible. * The most important thing is that the correct, final statement of the theorem is now known. Simpler techniques can be applied that are known to be adequate for the types of groups we know to be finite simple. In contrast, those who worked on the first generation proof did not know how many sporadic groups there were, and in fact some of the sporadic groups (e.g., the Janko groups) were discovered while proving other cases of the classification theorem. As a result, many of the pieces of the theorem were proved using techniques that were overly general. *Because the conclusion was unknown, the first generation proof consists of many stand-alone theorems, dealing with important special cases. Much of the work of proving these theorems was devoted to the analysis of numerous special cases. Given a larger, orchestrated proof, dealing with many of these special cases can be postponed until the most powerful assumptions can be applied. The price paid under this revised strategy is that these first generation theorems no longer have comparatively short proofs, but instead rely on the complete classification. *Many first generation theorems overlap, and so divide the possible cases in inefficient ways. As a result, families and subfamilies of finite simple groups were identified multiple times. The revised proof eliminates these redundancies by relying on a different subdivision of cases. *Finite group theorists have more experience at this sort of exercise, and have new techniques at their disposal. has called the work on the classification problem by Ulrich Meierfrankenfeld, Bernd Stellmacher, Gernot Stroth, and a few others, a third generation program. One goal of this is to treat all groups in characteristic 2 uniformly using the amalgam method.


Why is the proof so long?

Gorenstein has discussed some of the reasons why there might not be a short proof of the classification similar to the classification of
compact Lie group In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural gen ...
s. *The most obvious reason is that the list of simple groups is quite complicated: with 26 sporadic groups there are likely to be many special cases that have to be considered in any proof. So far no one has yet found a clean uniform description of the finite simple groups similar to the parameterization of the compact Lie groups by
Dynkin diagram In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebr ...
s. *Atiyah and others have suggested that the classification ought to be simplified by constructing some geometric object that the groups act on and then classifying these geometric structures. The problem is that no one has been able to suggest an easy way to find such a geometric structure associated with a simple group. In some sense, the classification does work by finding geometric structures such as BN-pairs, but this only comes at the end of a very long and difficult analysis of the structure of a finite simple group. *Another suggestion for simplifying the proof is to make greater use of
representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
. The problem here is that representation theory seems to require very tight control over the subgroups of a group in order to work well. For groups of small rank, one has such control and representation theory works very well, but for groups of larger rank no-one has succeeded in using it to simplify the classification. In the early days of the classification, there was a considerable effort made to use representation theory, but this never achieved much success in the higher rank case.


Consequences of the classification

This section lists some results that have been proved using the classification of finite simple groups. *The Schreier conjecture *The
Signalizer functor theorem In mathematics, a signalizer functor gives the intersections of a potential subgroup of a finite group with the centralizers of nontrivial elements of an abelian group. The signalizer functor theorem gives conditions under which a signalizer functo ...
*The B conjecture *The
Schur–Zassenhaus theorem The Schur–Zassenhaus theorem is a theorem in group theory which states that if G is a finite group, and N is a normal subgroup whose order is coprime to the order of the quotient group G/N, then G is a semidirect product (or split extension) of ...
for all groups (though this only uses the
Feit–Thompson theorem In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by . History conjectured that every nonabelian finite simple group has even order. suggested using ...
). *A transitive permutation group on a finite set with more than 1 element has a fixed-point-free element of prime power order. *The classification of 2-transitive permutation groups. *The classification of rank 3 permutation groups. *The
Sims conjecture In mathematics, the Sims conjecture is a result in group theory, originally proposed by Charles Sims. He conjectured that if G is a primitive permutation group on a finite set S and G_\alpha denotes the stabilizer of the point \alpha in S, then th ...
* Frobenius's conjecture on the number of solutions of .


See also

* O'Nan–Scott theorem


Notes


Citations


References

* * * * * * * Daniel Gorenstein (1985), "The Enormous Theorem", ''Scientific American'', December 1, 1985, vol. 253, no. 6, pp. 104–115. * * * * * * * * * *
Mark Ronan Mark Andrew Ronan (born 1947) is Emeritus Professor of Mathematics at the University of Illinois at Chicago and Honorary Professor of Mathematics at University College London. He has lived and taught in: Germany (at the University of Braunschwei ...
, ''Symmetry and the Monster'', , Oxford University Press, 2006. (Concise introduction for lay reader) *
Marcus du Sautoy Marcus Peter Francis du Sautoy (; born 26 August 1965) is a British mathematician, Simonyi Professor for the Public Understanding of Science at the University of Oxford, Fellow of New College, Oxford and author of popular mathematics and pop ...
, ''Finding Moonshine'', Fourth Estate, 2008, (another introduction for the lay reader) * Ron Solomon (1995)
On Finite Simple Groups and their Classification
" ''Notices of the American Mathematical Society''. (Not too technical and good on history) * – article wo
Levi L. Conant prize
for exposition * *


External links

*
ATLAS of Finite Group Representations.
' Searchable database of
representations ''Representations'' is an interdisciplinary journal in the humanities published quarterly by the University of California Press. The journal was established in 1983 and is the founding publication of the New Historicism movement of the 1980s. It ...
and other data for many finite simple groups. * Elwes, Richard,
An enormous theorem: the classification of finite simple groups
" ''Plus Magazine'', Issue 41, December 2006. For laypeople. * Madore, David (2003)

'' Includes a list of all nonabelian simple groups up to order 1010.
In what sense is the classification of all finite groups “impossible”?
* {{DEFAULTSORT:Classification Of Finite Simple Groups Group theory * Finite groups Theorems in algebra 2004 in science History of mathematics Mathematical classification systems