HOME

TheInfoList



OR:

In modal logic, a classical modal logic L is any modal logic containing (as axiom or theorem) the duality of the modal operators \Diamond A \leftrightarrow \lnot\Box\lnot A that is also closed under the rule \frac. Alternatively, one can give a dual definition of L by which L is classical
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bi ...
it contains (as axiom or theorem) \Box A \leftrightarrow \lnot\Diamond\lnot A and is closed under the rule \frac. The weakest classical system is sometimes referred to as E and is non-normal. Both algebraic and neighborhood semantics characterize familiar classical modal systems that are weaker than the weakest normal modal logic K. Every regular modal logic is classical, and every
normal modal logic In logic, a normal modal logic is a set ''L'' of modal formulas such that ''L'' contains: * All propositional tautologies; * All instances of the Kripke schema: \Box(A\to B)\to(\Box A\to\Box B) and it is closed under: * Detachment rule ('' modus ...
is regular and hence classical.


References

* Chellas, Brian.
Modal Logic: An Introduction
'. Cambridge University Press, 1980. Modal logic {{logic-stub