HOME

TheInfoList



OR:

In mathematics, especially in the fields of
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
and representation theory of groups, a class function is a function on a group ''G'' that is constant on the
conjugacy class In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other w ...
es of ''G''. In other words, it is invariant under the
conjugation map In abstract algebra an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the ''conjugating element''. They can be realized via simple operations from within the group itse ...
on ''G''. Such functions play a basic role in
representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
.


Characters

The
character Character or Characters may refer to: Arts, entertainment, and media Literature * ''Character'' (novel), a 1936 Dutch novel by Ferdinand Bordewijk * ''Characters'' (Theophrastus), a classical Greek set of character sketches attributed to The ...
of a linear representation of ''G'' over a field ''K'' is always a class function with values in ''K''. The class functions form the center of the
group ring In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the gi ...
''K'' 'G'' Here a class function ''f'' is identified with the element \sum_ f(g) g.


Inner products

The set of class functions of a group ''G'' with values in a field ''K'' form a ''K''-
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
. If ''G'' is finite and the characteristic of the field does not divide the order of ''G'', then there is an
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often ...
defined on this space defined by \langle \phi , \psi \rangle = \frac \sum_ \phi(g) \psi(g^) where , ''G'', denotes the order of ''G''. The set of irreducible characters of ''G'' forms an
orthogonal basis In mathematics, particularly linear algebra, an orthogonal basis for an inner product space V is a basis for V whose vectors are mutually orthogonal. If the vectors of an orthogonal basis are normalized, the resulting basis is an orthonormal b ...
, and if ''K'' is a
splitting field In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a polyn ...
for ''G'', for instance if ''K'' is
algebraically closed In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, becaus ...
, then the irreducible characters form an
orthonormal basis In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For ex ...
. In the case of a
compact group In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural ge ...
and ''K'' = C the field of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s, the notion of Haar measure allows one to replace the finite sum above with an integral: \langle \phi, \psi \rangle = \int_G \phi(t) \psi(t^{-1})\, dt. When ''K'' is the real numbers or the complex numbers, the inner product is a non-degenerate
Hermitian {{Short description, none Numerous things are named after the French mathematician Charles Hermite (1822–1901): Hermite * Cubic Hermite spline, a type of third-degree spline * Gauss–Hermite quadrature, an extension of Gaussian quadrature m ...
bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called '' scalars''). In other words, a bilinear form is a function that is lin ...
.


See also

* Brauer's theorem on induced characters


References

*
Jean-Pierre Serre Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the ...
, ''Linear representations of finite groups'',
Graduate Texts in Mathematics Graduate Texts in Mathematics (GTM) ( ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standa ...
42, Springer-Verlag, Berlin, 1977. Group theory