Chern–Gauss–Bonnet Theorem
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Chern theorem (or the Chern–Gauss–Bonnet theorem after
Shiing-Shen Chern Shiing-Shen Chern (; , ; October 26, 1911 – December 3, 2004) was a Chinese American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geome ...
,
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
, and
Pierre Ossian Bonnet Pierre Ossian Bonnet (; 22 December 1819, Montpellier – 22 June 1892, Paris) was a French mathematician. He made some important contributions to the differential geometry of surfaces, including the Gauss–Bonnet theorem. Biography Early yea ...
) states that the
Euler–Poincaré characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space' ...
(a
topological invariant In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
defined as the alternating sum of the
Betti number In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicia ...
s of a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
) of a
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
even-dimensional
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
is equal to the
integral In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
of a certain polynomial (the
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
) of its
curvature form In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case. Definition Let ''G'' be a Lie group with Lie algebra ...
(an
analytical invariant Analytic or analytical may refer to: Chemistry * Analytical chemistry, the analysis of material samples to learn their chemical composition and structure * Analytical technique, a method that is used to determine the concentration of a chemical ...
). It is a highly non-trivial generalization of the classic
Gauss–Bonnet theorem In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a Surface (topology), surface to its underlying topology. In the simplest applicati ...
(for 2-dimensional manifolds /
surfaces A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. Surface or surfaces may also refer to: Mathematics *Surface (mathematics), a generalization of a plane which needs not be flat * Sur ...
) to higher even-dimensional Riemannian manifolds. In 1943,
Carl B. Allendoerfer Carl Barnett Allendoerfer (April 4, 1911 – September 29, 1974) was an American mathematician in the mid-twentieth century, known for his work in topology and mathematics education. Background Allendoerfer was born in Kansas City, the son ...
and
André Weil André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was one of the most influential mathematicians of the twentieth century. His influence is du ...
proved a special case for extrinsic manifolds. In a classic paper published in 1944,
Shiing-Shen Chern Shiing-Shen Chern (; , ; October 26, 1911 – December 3, 2004) was a Chinese American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geome ...
proved the theorem in full generality connecting global
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
with local
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
. The
Riemann–Roch theorem The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It re ...
and the
Atiyah–Singer index theorem In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the space ...
are other generalizations of the Gauss–Bonnet theorem.


Statement

One useful form of the Chern theorem is that : \chi(M) = \int_M e(\Omega) where \chi(M) denotes the
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's ...
of '' M .'' The
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
is defined as : e(\Omega) = \frac 1 \operatorname(\Omega). where we have the
Pfaffian In mathematics, the determinant of an ''m''-by-''m'' skew-symmetric matrix can always be written as the square of a polynomial in the matrix entries, a polynomial with integer coefficients that only depends on ''m''. When ''m'' is odd, the polyno ...
\operatorname(\Omega). Here '' M '' is a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". A space is o ...
2''n''-dimensional
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
without boundary, and \Omega is the associated
curvature form In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case. Definition Let ''G'' be a Lie group with Lie algebra ...
of the
Levi-Civita connection In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the ( pseudo-) Riemannian ...
. In fact, the statement holds with \Omega the curvature form of any
metric connection In mathematics, a metric connection is a connection (vector bundle), connection in a vector bundle ''E'' equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are p ...
on the tangent bundle, as well as for other vector bundles over M . Since the dimension is 2''n'', we have that \Omega is an \mathfrak s\mathfrak o(2n)-valued 2-differential form on '' M '' (see
special orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. ...
). So \Omega can be regarded as a skew-symmetric 2''n'' × 2''n'' matrix whose entries are 2-forms, so it is a matrix over the
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
^\text\,T^*M. Hence the Pfaffian is a 2''n''-form. It is also an
invariant polynomial Invariant and invariance may refer to: Computer science * Invariant (computer science), an expression whose value doesn't change during program execution ** Loop invariant, a property of a program loop that is true before (and after) each iterat ...
. However, Chern's theorem in general is that for any closed C^\infty orientable ''n''-dimensional '' M '', : \chi(M) = (e(TM), where the above pairing (,) denotes the
cap product In algebraic topology the cap product is a method of adjoining a chain of degree p with a cochain of degree q, such that q\leq p, to form a composite chain of degree p-q. It was introduced by Eduard Čech in 1936, and independently by Hassl ...
with the
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
of the
tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
TM .


Proofs

In 1944, the general theorem was first proved by
S. S. Chern Shiing-Shen Chern (; , ; October 26, 1911 – December 3, 2004) was a Chinese American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geome ...
in a classic paper published by the
Princeton University Princeton University is a private university, private Ivy League research university in Princeton, New Jersey, United States. Founded in 1746 in Elizabeth, New Jersey, Elizabeth as the College of New Jersey, Princeton is the List of Colonial ...
math department. In 2013, a proof of the theorem via
supersymmetric Supersymmetry is a theoretical framework in physics that suggests the existence of a symmetry between particles with integer spin (''bosons'') and particles with half-integer spin (''fermions''). It proposes that for every known particle, there ...
Euclidean field theories was also found.


Applications

The Chern–Gauss–Bonnet theorem can be seen as a special instance in the theory of
characteristic classes In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent to which the bundle is "twisted" and whether it possesses sections. Characterist ...
. The Chern integrand is the
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
. Since it is a top-dimensional differential form, it is closed. The
naturality In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural ...
of the Euler class means that when changing the
Riemannian metric In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
, one stays in the same
cohomology class In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
. That means that the integral of the Euler class remains constant as the metric is varied and is thus a global invariant of the smooth structure. The theorem has also found numerous applications in
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, including: * adiabatic phase or
Berry's phase In Classical mechanics, classical and quantum mechanics, geometric phase is a Phase (waves), phase difference acquired over the course of a Period (physics), cycle, when a system is subjected to cyclic adiabatic process (quantum mechanics), adiabat ...
, *
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
, *
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
, *
topological quantum field theory In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory that computes topological invariants. While TQFTs were invented by physicists, they are also of mathemati ...
, * topological phases of matter (see the 2016 Nobel Prize in physics by
Duncan Haldane Frederick Duncan Michael Haldane (born 14 September 1951) is a British physicist who is currently the Sherman Fairchild University Professor of Physics at Princeton University. He is a co-recipient of the 2016 Nobel Prize in Physics, along wit ...
et al.).


Special cases


Four-dimensional manifolds

In dimension 2n=4, for a compact oriented manifold, we get :\chi(M) = \frac \int_M \left( , \text, ^2 - 4 , \text, ^2 + R^2 \right) \, d\mu where \text is the full
Riemann curvature tensor Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to mathematical analysis, analysis, number theory, and differential geometry. In the field of real analysis, he is mos ...
, \text is the
Ricci curvature tensor In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure ...
, and R is the
scalar curvature In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
. This is particularly important in
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, where spacetime is viewed as a 4-dimensional manifold. In terms of the orthogonal
Ricci decomposition In the mathematical fields of Riemannian and pseudo-Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a Riemannian or pseudo-Riemannian manifold into pieces with special algebraic properties. Th ...
of the Riemann curvature tensor, this formula can also be written as :\chi(M) = \frac \int_M \left( \frac, W, ^2 - \frac , Z, ^2 + \fracR^2 \right) \, d\mu where W is the
Weyl tensor In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal for ...
and Z is the traceless Ricci tensor.


Even-dimensional hypersurfaces

For a compact, even-dimensional
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
M in \mathbb^ we get :\int_M K\,dV = \frac\gamma_n\,\chi(M) where dV is the
volume element In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form \ma ...
of the hypersurface, K is the
Jacobian determinant In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. If this matrix is square, that is, if the number of variables equals the number of components ...
of the
Gauss map In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to its normal direction, a unit vector that is orthogonal to the surface at that point. Namely, given a surface ''X'' in Euclidean space R3 ...
, and \gamma_n is the surface area of the unit n-sphere.


Gauss–Bonnet theorem

The
Gauss–Bonnet theorem In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a Surface (topology), surface to its underlying topology. In the simplest applicati ...
is a special case when M is a 2-dimensional manifold. It arises as the special case where the topological index is defined in terms of
Betti number In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicia ...
s and the analytical index is defined in terms of the Gauss–Bonnet integrand. As with the two-dimensional Gauss–Bonnet theorem, there are generalizations when M is a
manifold with boundary In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
.


Further generalizations


Atiyah–Singer

A far-reaching generalization of the Gauss–Bonnet theorem is the
Atiyah–Singer Index Theorem In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the space ...
. Let D be a weakly
elliptic differential operator In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which im ...
between vector bundles. That means that the principal symbol is an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
. Strong ellipticity would furthermore require the symbol to be
positive-definite In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: * Positive-definite bilinear form * Positive-definite ...
. Let D^* be its
adjoint operator In mathematics, specifically in operator theory, each linear operator A on an inner product space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule :\langle Ax,y \rangle = \langle x,A^*y \rangle, where \l ...
. Then the analytical index is defined as : \dim(\ker(D))-\dim(\ker(D^*)) By ellipticity this is always finite. The index theorem says that this is constant as the elliptic operator is varied smoothly. It is equal to a topological index, which can be expressed in terms of
characteristic class In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent to which the bundle is "twisted" and whether it possesses sections. Characterist ...
es like the
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
. The Chern–Gauss–Bonnet theorem is derived by considering the
Dirac operator In mathematics and in quantum mechanics, a Dirac operator is a first-order differential operator that is a formal square root, or half-iterate, of a second-order differential operator such as a Laplacian. It was introduced in 1847 by William Ham ...
: D = d + d^*


Odd dimensions

The Chern formula is only defined for even dimensions because the
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's ...
vanishes for odd dimensions. There is some research being done on 'twisting' the index theorem in
K-theory In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometr ...
to give non-trivial results for odd dimensions. There is also a version of Chern's formula for
orbifold In the mathematical disciplines of topology and geometry, an orbifold (for "orbit-manifold") is a generalization of a manifold. Roughly speaking, an orbifold is a topological space that is locally a finite group quotient of a Euclidean space. D ...
s.


History

Shiing-Shen Chern Shiing-Shen Chern (; , ; October 26, 1911 – December 3, 2004) was a Chinese American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geome ...
published his proof of the theorem in 1944 while at the
Institute for Advanced Study The Institute for Advanced Study (IAS) is an independent center for theoretical research and intellectual inquiry located in Princeton, New Jersey. It has served as the academic home of internationally preeminent scholars, including Albert Ein ...
. This was historically the first time that the formula was proven without assuming the manifold to be embedded in a Euclidean space, which is what it means by "intrinsic". The special case for a
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
(an (n-1)-dimensional submanifold in an n-dimensional Euclidean space) was proved by H. Hopf in which the integrand is the Gauss–Kronecker curvature (the product of all principal curvatures at a point of the hypersurface). This was generalized independently by Allendoerfer in 1939 and Fenchel in 1940 to a Riemannian submanifold of a Euclidean space of any codimension, for which they used the Lipschitz–Killing curvature (the average of the Gauss–Kronecker curvature along each unit normal vector over the unit sphere in the normal space; for an even dimensional submanifold, this is an invariant only depending on the Riemann metric of the submanifold). Their result would be valid for the general case if the
Nash embedding theorem The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedding, embedded into some Euclidean space. Isometry, Isometric means preserving the length of ever ...
can be assumed. However, this theorem was not available then, as John Nash published his famous embedding theorem for Riemannian manifolds in 1956. In 1943 Allendoerfer and Weil published their proof for the general case, in which they first used an approximation theorem of H. Whitney to reduce the case to analytic Riemannian manifolds, then they embedded "small" neighborhoods of the manifold isometrically into a Euclidean space with the help of the Cartan–Janet local embedding theorem, so that they can patch these embedded neighborhoods together and apply the above theorem of Allendoerfer and Fenchel to establish the global result. This is, of course, unsatisfactory for the reason that the theorem only involves intrinsic invariants of the manifold, then the validity of the theorem should not rely on its embedding into a Euclidean space. Weil met Chern in Princeton after Chern arrived in August 1943. He told Chern that he believed there should be an intrinsic proof, which Chern was able to obtain within two weeks. The result is Chern's classic paper "A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds" published in the Annals of Mathematics the next year. The earlier work of Allendoerfer, Fenchel, Allendoerfer and Weil were cited by Chern in this paper. The work of Allendoerfer and Weil was also cited by Chern in his second paper related to the same topic.


See also

*
Chern–Weil homomorphism In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold ''M'' in terms of connections and curvature representing ...
*
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches ...
*
Chern–Simons form In mathematics, the Chern–Simons forms are certain secondary characteristic classes. The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from whic ...
*
Chern–Simons theory The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who intr ...
*
Chern's conjecture (affine geometry) Chern's conjecture for affinely flat manifolds was proposed by Shiing-Shen Chern in 1955 in the field of affine geometry. As of 2018, it remains an unsolved mathematical problem. Chern's conjecture states that the Euler characteristic of a compact ...
* Pontryagin number *
Pontryagin class In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four. Definition Given a real vector bundl ...
*
De Rham cohomology In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapte ...
*
Berry's phase In Classical mechanics, classical and quantum mechanics, geometric phase is a Phase (waves), phase difference acquired over the course of a Period (physics), cycle, when a system is subjected to cyclic adiabatic process (quantum mechanics), adiabat ...
*
Atiyah–Singer index theorem In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the space ...
*
Riemann–Roch theorem The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It re ...


References

{{DEFAULTSORT:Generalized Gauss-Bonnet theorem Theorems in differential geometry