In
mathematics, the Chern theorem (or the Chern–Gauss–Bonnet theorem
after
Shiing-Shen Chern
Shiing-Shen Chern (; , ; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geom ...
,
Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refe ...
, and
Pierre Ossian Bonnet) states that the
Euler–Poincaré characteristic (a
topological invariant
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spac ...
defined as the alternating sum of the
Betti number
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicia ...
s of a topological space) of a
closed even-dimensional
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
is equal to the
integral
In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
of a certain polynomial (the
Euler class
In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle ...
) of its
curvature form (an
analytical invariant
Generally speaking, analytic (from el, ἀναλυτικός, ''analytikos'') refers to the "having the ability to analyze" or "division into elements or principles".
Analytic or analytical can also have the following meanings:
Chemistry
* A ...
).
It is a highly non-trivial generalization of the classic
Gauss–Bonnet theorem (for 2-dimensional manifolds /
surfaces) to higher even-dimensional Riemannian manifolds. In 1943,
Carl B. Allendoerfer
Carl Barnett Allendoerfer (April 4, 1911 – September 29, 1974) was an American mathematician in the mid-twentieth century, known for his work in topology and mathematics education.
Background
Allendoerfer was born in Kansas City, the son o ...
and
André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was a founding member and the ''de facto'' early leader of the mathematical Bourbaki group. ...
proved a special case for extrinsic manifolds. In a classic paper published in 1944,
Shiing-Shen Chern
Shiing-Shen Chern (; , ; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geom ...
proved the theorem in full generality connecting global
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
with local
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
.
Riemann–Roch and
Atiyah–Singer are other generalizations of the Gauss–Bonnet theorem.
Statement
One useful form of the Chern theorem is that
:
where
denotes the
Euler characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological spac ...
of ''M.'' The
Euler class
In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle ...
is defined as
:
where we have the
Pfaffian
In mathematics, the determinant of a skew-symmetric matrix can always be written as the square of a polynomial in the matrix entries, a polynomial with integer coefficients that only depend on the size of the matrix. The value of this polynomial ...
. Here ''M'' is a
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact
* Blood compact, an ancient ritual of the Philippines
* Compact government, a type of colonial rule utilized in British ...
orientable
In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space ...
2''n''-dimensional
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
without
boundary, and
is the associated
curvature form of the
Levi-Civita connection
In Riemannian or pseudo Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold (i.e. affine connection) that preserves ...
. In fact, the statement holds with
the curvature form of any
metric connection on the tangent bundle, as well as for other vector bundles over
.
Since the dimension is 2''n'', we have that
is an
-valued
2-differential form on ''M'' (see
special orthogonal group
In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. ...
). So
can be regarded as a skew-symmetric 2''n'' × 2''n'' matrix whose entries are 2-forms, so it is a matrix over the
commutative ring . Hence the Pfaffian is a 2''n''-form. It is also an
invariant polynomial In mathematics, an invariant polynomial is a polynomial P that is invariant under a group \Gamma acting on a vector space V. Therefore, P is a \Gamma-invariant polynomial if
:P(\gamma x) = P(x)
for all \gamma \in \Gamma and x \in V.
Cases of p ...
.
However, Chern's theorem in general is that for any closed
orientable ''n''-dimensional ''M'',
:
where the above pairing (,) denotes the
cap product
In algebraic topology the cap product is a method of adjoining a chain of degree ''p'' with a cochain of degree ''q'', such that ''q'' ≤ ''p'', to form a composite chain of degree ''p'' − ''q''. It was introduced by Eduard Čech in 1936, a ...
with the
Euler class
In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle ...
of the
tangent bundle
In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
TM.
Proofs
In 1944, the general theorem was first proved by
S. S. Chern
Shiing-Shen Chern (; , ; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geom ...
in a classic paper published by the
Princeton University
Princeton University is a private research university in Princeton, New Jersey. Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the n ...
math department.
In 2013, a proof of the theorem via
supersymmetric
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theorie ...
Euclidean field theories was also found.
Applications
The Chern–Gauss–Bonnet theorem can be seen as a special instance in the theory of
characteristic classes
In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classe ...
. The Chern integrand is the
Euler class
In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle ...
. Since it is a top-dimensional differential form, it is closed. The
naturality of the Euler class means that when changing the
Riemannian metric
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
, one stays in the same
cohomology class. That means that the integral of the Euler class remains constant as the metric is varied and is thus a global invariant of the smooth structure.
The theorem has also found numerous applications in
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, including:
*
adiabatic phase or
Berry's phase,
*
string theory,
*
condensed matter physics
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the s ...
,
*
topological quantum field theory
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants.
Although TQFTs were invented by physicists, they are also of mathe ...
,
*
topological phases of matter (see the 2016 Nobel Prize in physics by
Duncan Haldane et al.).
Special cases
Four-dimensional manifolds
In dimension
, for a compact oriented manifold, we get
:
where
is the full
Riemann curvature tensor
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds ...
,
is the
Ricci curvature tensor, and
is the
scalar curvature
In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
. This is particularly important in
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
, where spacetime is viewed as a 4-dimensional manifold.
Even-dimensional hypersurfaces
When M is a compact, even-dimensional
hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Eucl ...
in R
''n+1'' we get
:
where ''dV'' is the
volume element of the hypersurface,
is the
Jacobian determinant of the
Gauss map, and
is the
surface area of the unit n-sphere.
Gauss–Bonnet theorem
The
Gauss–Bonnet theorem is a special case when M is a 2-dimensional manifold. It arises as the special case where the topological index is defined in terms of
Betti number
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicia ...
s and the analytical index is defined in terms of the Gauss–Bonnet integrand.
As with the two-dimensional Gauss–Bonnet theorem, there are generalizations when ''M'' is a
manifold with boundary
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ne ...
.
Further generalizations
Atiyah–Singer
A far-reaching generalization of the Gauss–Bonnet theorem is the
Atiyah–Singer Index Theorem.
Let
be a weakly
elliptic differential operator
In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which im ...
between vector bundles. That means that the
principal symbol is an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
. Strong ellipticity would furthermore require the symbol to be
positive-definite.
Let
be its
adjoint operator
In mathematics, specifically in operator theory, each linear operator A on a Euclidean vector space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule
:\langle Ax,y \rangle = \langle x,A^*y \rangle,
wher ...
. Then the analytical index is defined as
: dim(ker(''D'')) − dim(ker(''D''*)),
By ellipticity this is always finite. The index theorem says that this is constant as the elliptic operator is varied smoothly. It is equal to a topological index, which can be expressed in terms of
characteristic class
In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic class ...
es like the
Euler class
In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle ...
.
The Chern–Gauss–Bonnet theorem is derived by considering the
Dirac operator
In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally ...
:
Odd dimensions
The Chern formula is only defined for even dimensions because the
Euler characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological spac ...
vanishes for odd dimensions. There is some research being done on 'twisting' the index theorem in
K-theory
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geom ...
to give non-trivial results for odd dimensions.
There is also a version of Chern's formula for
orbifold
In the mathematical disciplines of topology and geometry, an orbifold (for "orbit-manifold") is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.
D ...
s.
History
Shiing-Shen Chern
Shiing-Shen Chern (; , ; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geom ...
published his proof of the theorem in 1944 while at the
Institute for Advanced Study
The Institute for Advanced Study (IAS), located in Princeton, New Jersey, in the United States, is an independent center for theoretical research and intellectual inquiry. It has served as the academic home of internationally preeminent scholar ...
. This was historically the first time that the formula was proven without assuming the manifold to be embedded in a Euclidean space, which is what it means by "intrinsic". The special case for a
hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Eucl ...
(an n-1-dimensional submanifolds in an n-dimensional Euclidean space) was proved by
H. Hopf in which the integrand is the Gauss–Kronecker curvature (the product of all principal curvatures at a point of the hypersurface). This was generalized independently by Allendoerfer in 1939 and Fenchel in 1940 to a Riemannian submanifold of a Euclidean space of any codimension, for which they used the Lipschitz–Killing curvature (the average of the Gauss–Kronecker curvature along each unit normal vector over the unit sphere in the normal space; for an even dimensional submanifold, this is an invariant only depending on the Riemann metric of the submanifold). Their result would be valid for the general case if the
Nash embedding theorem
The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedded into some Euclidean space. Isometric means preserving the length of every path. For insta ...
can be assumed. However, this theorem was not available then, as John Nash published his famous embedding theorem for Riemannian manifolds in 1956. In 1943 Allendoerfer and Weil published their proof for the general case, in which they first used an approximation theorem of H. Whitney to reduce the case to analytic Riemannian manifolds, then they embedded "small" neighborhoods of the manifold isometrically into a Euclidean space with the help of the Cartan–Janet local embedding theorem, so that they can patch these embedded neighborhoods together and apply the above theorem of Allendoerfer and Fenchel to establish the global result. This is, of course, unsatisfactory for the reason that the theorem only involves intrinsic invariants of the manifold, then the validity of the theorem should not rely on its embedding into a Euclidean space. Weil met Chern in Princeton after Chern arrived in August 1943. He told Chern that he believed there should be an intrinsic proof, which Chern was able to obtain within two weeks. The result is Chern's classic paper "A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds" published in the Annals of Mathematics the next year. The earlier work of Allendoerfer, Fenchel, Allendoerfer and Weil were cited by Chern in this paper. The work of Allendoerfer and Weil was also cited by Chern in his second paper related to the same topic.
See also
*
Chern–Weil homomorphism
*
Chern class
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Y ...
*
Chern–Simons form
*
Chern–Simons theory
The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and Jam ...
*
Chern's conjecture (affine geometry) Chern's conjecture for affinely flat manifolds was proposed by Shiing-Shen Chern in 1955 in the field of affine geometry. As of 2018, it remains an unsolved mathematical problem.
Chern's conjecture states that the Euler characteristic of a compact ...
*
Pontryagin number
*
Pontryagin class
*
De Rham cohomology
In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adap ...
*
Berry's phase
*
Atiyah–Singer index theorem
*
Riemann–Roch theorem
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It ...
References
{{DEFAULTSORT:Generalized Gauss-Bonnet theorem
Theorems in differential geometry