HOME
*





Invariant Polynomial
In mathematics, an invariant polynomial is a polynomial P that is invariant under a group \Gamma acting on a vector space V. Therefore, P is a \Gamma-invariant polynomial if :P(\gamma x) = P(x) for all \gamma \in \Gamma and x \in V. Cases of particular importance are for Γ a finite group (in the theory of Molien series, in particular), a compact group, a Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ... or algebraic group. For a basis-independent definition of 'polynomial' nothing is lost by referring to the symmetric powers of the given linear representation of Γ. References Commutative algebra Invariant theory Polynomials {{algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Invariant (mathematics)
In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class. Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an importa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a set and an operation that combines any two elements of the set to produce a third element of the set, in such a way that the operation is associative, an identity element exists and every element has an inverse. These three axioms hold for number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the ob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album ''Invisible Empires ''Invisible Empires'' is the seventh studio album and tenth album overall from Christian singer and songwriter Sara Groves, and it released on October 18, 2011 by Fair Trade and Columbia Records. The producers on the album were Steve Hindalong an ...'' See also * * Nonfinite (other) {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Molien Series
In mathematics, Molien's formula computes the generating function attached to a linear representation of a group ''G'' on a finite-dimensional vector space, that counts the homogeneous polynomials of a given total degree that are invariants for ''G''. It is named for Theodor Molien. Precisely, it says: given a finite-dimensional complex representation ''V'' of ''G'' and R_n = \mathbb n = \operatorname^n(V^*), the space of homogeneous polynomial functions on ''V'' of degree ''n'' (degree-one homogeneous polynomials are precisely linear functionals), if ''G'' is a finite group, the series (called Molien series) can be computed as:The formula is also true over an algebraically closed field of characteristic not dividing the order of ''G''. :\sum_^ \dim(R_n^G) t^n = (\# G)^ \sum_ \det(1 - tg, V^*)^. Here, R_n^G is the subspace of R_n that consists of all vectors fixed by all elements of ''G''; i.e., invariant forms of degree ''n''. Thus, the dimension of it is the number of invariants ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Group
In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory. In the following we will assume all groups are Hausdorff spaces. Compact Lie groups Lie groups form a class of topological groups, and the compact Lie groups have a particularly well-developed theory. Basic examples of compact Lie groups include * the circle group T and the torus groups T''n'', * the orthogonal group O(''n''), the special orthogonal group SO(''n'') and its covering spin group Spin(''n''), * the unitary group U(''n'') and the special unitary group SU(''n''), * the compact forms of the exceptio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symmetric Power
In mathematics, the ''n''-th symmetric power of an object ''X'' is the quotient of the ''n''-fold product X^n:=X \times \cdots \times X by the permutation action of the symmetric group \mathfrak_n. More precisely, the notion exists at least in the following three areas: *In linear algebra, the ''n''-th symmetric power of a vector space ''V'' is the vector subspace of the symmetric algebra of ''V'' consisting of degree-''n'' elements (here the product is a tensor product). *In algebraic topology, the ''n''-th symmetric power of a topological space ''X'' is the quotient space X^n/\mathfrak_n, as in the beginning of this article. *In algebraic geometry, a symmetric power is defined in a way similar to that in algebraic topology. For example, if X = \operatorname(A) is an affine variety, then the GIT quotient In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme X = \operatorname A with an action by a group scheme ''G'' is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]