Chemotroph
   HOME

TheInfoList



OR:

A chemotroph is an organism that obtains
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
by the oxidation of electron donors in their environments. These molecules can be organic ( chemoorganotrophs) or inorganic ( chemolithotrophs). The chemotroph designation is in contrast to phototrophs, which use photons. Chemotrophs can be either autotrophic or heterotrophic. Chemotrophs can be found in areas where electron donors are present in high concentration, for instance around hydrothermal vents.


Chemoautotroph

Chemoautotrophs are autotrophic organisms that can rely on chemosynthesis, i.e. deriving biological energy from
chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s of environmental inorganic substrates and synthesizing all necessary
organic compound Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
s from
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
. Chemoautotrophs can use inorganic energy sources such as hydrogen sulfide, elemental sulfur, ferrous iron, molecular
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
, and ammonia or organic sources to produce energy. Most chemoautotrophs are prokaryotic extremophiles,
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
, or
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
that live in otherwise hostile environments (such as deep sea vents) and are the primary producers in such
ecosystem An ecosystem (or ecological system) is a system formed by Organism, organisms in interaction with their Biophysical environment, environment. The Biotic material, biotic and abiotic components are linked together through nutrient cycles and en ...
s. Chemoautotrophs generally fall into several groups: methanogens, sulfur oxidizers and reducers, nitrifiers, anammox bacteria, and thermoacidophiles. An example of one of these prokaryotes would be '' Sulfolobus''. Chemolithotrophic growth can be dramatically fast, such as '' Hydrogenovibrio crunogenus'' with a doubling time around one hour. The term "chemosynthesis", coined in 1897 by Wilhelm Pfeffer, originally was defined as the energy production by oxidation of inorganic substances in association with autotrophy — what would be named today as ''chemolithoautotrophy''. Later, the term would include also the ''chemoorganoautotrophy'', that is, it can be seen as a synonym of chemoautotrophy.


Chemoheterotroph

Chemoheterotrophs (or chemotrophic heterotrophs) are unable to fix carbon to form their own organic compounds. Chemoheterotrophs can be chemolithoheterotrophs, utilizing inorganic electron sources such as sulfur, or, much more commonly, chemoorganoheterotrophs, utilizing organic electron sources such as carbohydrates, lipids, and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s. Most animals and fungi are examples of chemoheterotrophs, as are halophiles.


Iron- and manganese-oxidizing bacteria

Iron-oxidizing bacteria are chemotrophic
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
that derive
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
by oxidizing dissolved
ferrous In chemistry, iron(II) refers to the chemical element, element iron in its +2 oxidation number, oxidation state. The adjective ''ferrous'' or the prefix ''ferro-'' is often used to specify such compounds, as in ''ferrous chloride'' for iron(II ...
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
. They are known to grow and proliferate in waters containing iron concentrations as low as 0.1 mg/L. However, at least 0.3 ppm of dissolved oxygen is needed to carry out the oxidation.
Iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
has many existing roles in biology not related to
redox Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is t ...
reactions; examples include iron–sulfur proteins, hemoglobin, and coordination complexes. Iron has a widespread distribution globally and is considered one of the most abundant in the Earth's crust, soil, and sediments. Iron is a trace element in marine environments. Its role as the electron donor for some chemolithotrophs is probably very ancient.


See also

* Chemosynthesis * Lithotroph * Methanogen (feeds on hydrogen) * Methanotroph * RISE project – expedition that discovered high-temperature vent communities


Notes


References

1. Katrina Edwards. ''Microbiology of a Sediment Pond and the Underlying Young, Cold, Hydrologically Active Ridge Flank''. Woods Hole Oceanographic Institution. 2. Coupled Photochemical and Enzymatic Mn(II) Oxidation Pathways of a Planktonic Roseobacter-Like Bacterium. Colleen M. Hansel and Chris A. Francis* Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115. Received 28 September 2005. Accepted 17 February 2006. {{Modelling ecosystems Biology terminology Microbial growth and nutrition Planktology Trophic ecology