HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, a charge is any of many different quantities, such as the
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
in
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
or the
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; ho ...
in
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
. Charges correspond to the
time-invariant In control theory, a time-invariant (TI) system has a time-dependent system function that is not a direct function of time. Such systems are regarded as a class of systems in the field of system analysis. The time-dependent system function is ...
generators of a
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
, and specifically, to the generators that commute with the
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
. Charges are often denoted by Q, and so the invariance of the charge corresponds to the vanishing
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, ...
,H0, where H is the Hamiltonian. Thus, charges are associated with conserved
quantum number In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system. To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantu ...
s; these are the eigenvalues of the generator Q. A "charge" can also refer to a point-shaped object with an electric charge and a position, such as in the
method of image charges The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with fictitious ...
.


Abstract definition

Abstractly, a charge is any generator of a
continuous symmetry In mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some Symmetry in mathematics, symmetries as Motion (physics), motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant u ...
of the
physical system A physical system is a collection of physical objects under study. The collection differs from a set: all the objects must coexist and have some physical relationship. In other words, it is a portion of the physical universe chosen for analys ...
under study. When a physical system has a symmetry of some sort,
Noether's theorem Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems (see Noether's second theorem) published by the mat ...
implies the existence of a
conserved current In physics a conserved current is a current, j^\mu, that satisfies the continuity equation \partial_\mu j^\mu=0. The continuity equation represents a conservation law, hence the name. Indeed, integrating the continuity equation over a volume V, ...
. The thing that "flows" in the current is the "charge"; the charge is the generator of the (local) symmetry group. This charge is sometimes called the Noether charge. Thus, for example, the
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
is the generator of the
U(1) In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
symmetry of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
. The conserved current is the
electric current An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
. In the case of local, dynamical symmetries, associated with every charge is a
gauge field In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, t ...
; when quantized, the gauge field becomes a
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge ...
. The charges of the theory "radiate" the gauge field. Thus, for example, the gauge field of electromagnetism is the
electromagnetic field An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
; and the gauge boson is the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
. The word "charge" is often used as a synonym for both the generator of a symmetry, and the conserved quantum number (eigenvalue) of the generator. Thus, letting the upper-case letter \ Q\ refer to the generator, one has that the generator commutes with the
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
\ \left Q, H\ \right= 0 ~.
Commutation Commute, commutation or commutative may refer to: * Commuting, the process of travelling between a place of residence and a place of work Mathematics * Commutative property, a property of a mathematical operation whose result is insensitive to th ...
implies that the eigenvalues (lower-case) \ q\ are time-invariant: \ \tfrac = 0 ~. So, for example, when the symmetry group is a
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
, then the charge operators correspond to the simple roots of the
root system In mathematics, a root system is a configuration of vector space, vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and ...
of the
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
; the discreteness of the root system accounting for the quantization of the charge. The simple roots are used, as all the other roots can be obtained as linear combinations of these. The general roots are often called raising and lowering operators, or
ladder operator In linear algebra (and its application to quantum mechanics), a raising or lowering operator (collectively known as ladder operators) is an operator that increases or decreases the eigenvalue of another operator. In quantum mechanics, the raisin ...
s. The charge quantum numbers then correspond to the weights of the
highest-weight module In the mathematical field of representation theory, a weight of an algebra ''A'' over a field F is an algebra homomorphism from ''A'' to F, or equivalently, a one-dimensional representation of ''A'' over F. It is the algebra analogue of a multipl ...
s of a given
representation Representation may refer to: Law and politics *Representation (politics), political activities undertaken by elected representatives, as well as other theories ** Representative democracy, type of democracy in which elected officials represent a ...
of the Lie algebra. So, for example, when a particle in a
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
belongs to a symmetry, then it transforms according to a particular representation of that symmetry; the charge quantum number is then the weight of the representation.


Examples

Various charge quantum numbers have been introduced by theories of
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
. These include the charges of the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
: * The
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; ho ...
of
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s. The color charge generates the
SU(3) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 i ...
color symmetry of
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
. * The
weak isospin In particle physics, weak isospin is a quantum number relating to the electrically charged part of the weak interaction: Particles with half-integer weak isospin can interact with the bosons; particles with zero weak isospin do not. Weak isospin ...
quantum numbers of the
electroweak interaction In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two force ...
. It generates the
SU(2) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 ...
part of the electroweak SU(2) × U(1) symmetry. Weak isospin is a local symmetry, whose
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge ...
s are the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
. * The
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
for electromagnetic interactions. In mathematics texts, this is sometimes referred to as the u_1-charge of a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
module. Note that these charge quantum numbers show up in the Lagrangian via the Gauge covariant derivative#Standard_Model. Charges of approximate symmetries: * The
strong isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. Isospin is also known as isobaric spin or isotopic spin. Isospin symmetry is a subset of the flavour symmetry ...
charges. The symmetry groups is
SU(2) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 ...
flavor Flavour or flavor is either the sensory perception of taste or smell, or a flavoring in food that produces such perception. Flavour or flavor may also refer to: Science * Flavors (programming language), an early object-oriented extension to L ...
symmetry; the gauge bosons are the
pion In particle physics, a pion (, ) or pi meson, denoted with the Greek alphabet, Greek letter pi (letter), pi (), is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the ...
s. The pions are not
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a c ...
s, and the symmetry is only approximate. It is a special case of flavor symmetry. * Other
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
-flavor charges, such as
strangeness In particle physics, strangeness (symbol ''S'') is a property of particles, expressed as a quantum number, for describing decay of particles in strong and electromagnetic interactions that occur in a short period of time. The strangeness of a ...
or
charm Charm or Charms may refer to: Arts and entertainment * The Charms, an American garage rock band * Otis Williams and the Charms, an American doo-wop group * The Charm (Bubba Sparxxx album), ''The Charm'' (Bubba Sparxxx album), 2006 * Charm (Danny! ...
. Together with the – isospin mentioned above, these generate the global SU(6) flavor symmetry of the fundamental particles; this symmetry is badly broken by the masses of the heavy quarks. Charges include the
hypercharge In particle physics, the hypercharge (a portmanteau of hyperonic and charge (physics), charge) ''Y'' of a subatomic particle, particle is a quantum number conserved under the strong interaction. The concept of hypercharge provides a single charg ...
, the X-charge and the
weak hypercharge In the Standard Model (mathematical formulation), Standard Model of electroweak interactions of particle physics, the weak hypercharge is a quantum number relating the electric charge and the third component of weak isospin. It is frequently deno ...
. Hypothetical charges of extensions to the Standard Model: * The hypothetical
magnetic charge In particle physics, a magnetic monopole is a hypothetical particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magnetic charge". ...
is another charge in the theory of electromagnetism. Magnetic charges are not seen experimentally in laboratory experiments, but would be present for theories including
magnetic monopole In particle physics, a magnetic monopole is a hypothetical particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magnetic charge". ...
s. In
supersymmetry Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
: * The
supercharge In theoretical physics, a supercharge is a generator of supersymmetry transformations. It is an example of the general notion of a charge (physics), charge in physics. Supercharge, denoted by the symbol Q, is an operator which transforms bosons in ...
refers to the generator that rotates the fermions into bosons, and vice versa, in the supersymmetry. In
conformal field theory A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometime ...
: * The
central charge In theoretical physics, a central charge is an operator ''Z'' that commutes with all the other symmetry operators. The adjective "central" refers to the center of the symmetry group—the subgroup of elements that commute with all other element ...
of the
Virasoro algebra In mathematics, the Virasoro algebra is a complex Lie algebra and the unique nontrivial central extension of the Witt algebra. It is widely used in two-dimensional conformal field theory and in string theory. It is named after Miguel Ángel ...
, sometimes referred to as the ''conformal central charge'' or the
conformal anomaly A conformal anomaly, scale anomaly, trace anomaly or Weyl anomaly is an anomaly, i.e. a quantum phenomenon that breaks the conformal symmetry of the classical theory. In quantum field theory when we set Planck constant \hbar to zero we have only ...
. Here, the term 'central' is used in the sense of the
center Center or centre may refer to: Mathematics *Center (geometry), the middle of an object * Center (algebra), used in various contexts ** Center (group theory) ** Center (ring theory) * Graph center, the set of all vertices of minimum eccentrici ...
in
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
: it is an operator that commutes with all the other operators in the algebra. The central charge is the eigenvalue of the central generator of the algebra; here, it is the
energy–momentum tensor Energy–momentum may refer to: * Four-momentum * Stress–energy tensor * Energy–momentum relation {{dab ...
of the
two-dimensional conformal field theory A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal fi ...
. In
gravitation In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
: * Eigenvalues of the energy–momentum tensor correspond to physical
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
.


Charge conjugation

In the formalism of particle theories, charge-like quantum numbers can sometimes be inverted by means of a
charge conjugation In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C- ...
operator called C. Charge conjugation simply means that a given symmetry group occurs in two inequivalent (but still
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
)
group representation In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used ...
s. It is usually the case that the two charge-conjugate representations are
complex conjugate In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - ...
fundamental representation In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defi ...
s of the Lie group. Their product then forms the
adjoint representation In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if ''G'' is \m ...
of the group. Thus, a common example is that the product of two charge-conjugate fundamental representations of
SL(2,C) SL may refer to: Arts and entertainment * SL (rapper), a rapper from London * ''Second Life'', a multi-user 3D virtual world * Sensei's Library, an Internet site dedicated to the game of Go * Subdominant leittonwechselklänge * Leica SL, a mirro ...
(the
spinor In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infi ...
s) forms the adjoint rep of the
Lorentz group In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physi ...
SO(3,1); abstractly, one writes :2\otimes\overline=3\oplus 1.\ That is, the product of two (Lorentz) spinors is a (Lorentz) vector and a (Lorentz) scalar. Note that the complex Lie algebra sl(2,C) has a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
real form In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is the complexification of ''g''0: : \mathfra ...
su(2) (in fact, all Lie algebras have a unique compact real form). The same decomposition holds for the compact form as well: the product of two spinors in
su(2) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 ...
being a vector in the
rotation group In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. ...
O(3) In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. T ...
and a singlet. The decomposition is given by the Clebsch–Gordan coefficients. A similar phenomenon occurs in the compact group
SU(3) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 i ...
, where there are two charge-conjugate but inequivalent fundamental representations, dubbed 3 and \overline, the number 3 denoting the dimension of the representation, and with the quarks transforming under 3 and the antiquarks transforming under \overline. The Kronecker product of the two gives :3\otimes\overline=8\oplus 1.\ That is, an eight-dimensional representation, the octet of the eight-fold way, and a singlet. The decomposition of such products of representations into direct sums of irreducible representations can in general be written as :\Lambda \otimes \Lambda' = \bigoplus_i \mathcal_i \Lambda_i for representations \Lambda. The dimensions of the representations obey the "dimension sum rule": :d_\Lambda \cdot d_ = \sum_i \mathcal_i d_. Here, d_\Lambda is the dimension of the representation \Lambda, and the integers \mathcal being the Littlewood–Richardson coefficients. The decomposition of the representations is again given by the Clebsch–Gordan coefficients, this time in the general Lie-algebra setting.


See also

*
Casimir operator In mathematics, a Casimir element (also known as a Casimir invariant or Casimir operator) is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operato ...


References

{{reflist Electromagnetism Quantum chromodynamics Physical quantities