The UDP-forming form of cellulose synthase () is the main enzyme that produces
cellulose
Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
. Systematically, it is known as ''UDP-glucose:(1→4)-β-
D-glucan 4-β-
D-glucosyltransferase'' in
enzymology
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
. It
catalyzes
Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
the
chemical reaction
A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
:
:
UDP-glucose +
D-glucosyl">1→4)-β-D-glucosylsub>n =
UDP +
D-glucosyl">1→4)-β-D-glucosylsub>n+1
A similar enzyme utilizes
GDP-glucose,
cellulose synthase (GDP-forming) (
EC 2.4.1.29).
This family of enzymes is found in
bacteria
Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
and
plant
Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s alike. Plant members are usually known as ''CesA'' (cellulose synthase) or the tentative ''CslA'' (cellulose synthase-like), while bacterial members may additionally be known as ''BcsA'' (bacterial cellulose synthase) or ''CelA'' (simply "cellulose").
Plants acquired ''CesA'' from the
endosymbiosis event that produced the
chloroplast
A chloroplast () is a type of membrane-bound organelle, organelle known as a plastid that conducts photosynthesis mostly in plant cell, plant and algae, algal cells. Chloroplasts have a high concentration of chlorophyll pigments which captur ...
.
This family belongs to
glucosyltransferase family 2 (GT2).
Glycosyltransferases are involved in the biosynthesis and hydrolysis of the bulk of earth's biomass.
There are known to be about seven subfamilies in the plant ''CesA'' superfamily,
or ten in the combined plant-algal superfamily.
[ Urochordates are the only group of animals possessing this enzyme, having acquired them by ]horizontal gene transfer
Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the e ...
more than 530 million years ago.[
]
Cellulose
Cellulose
Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
is an aggregation of unbranched polymer
A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
chains made of β-(1→4)-linked glucose
Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
residues that makes up a large portion of primary and secondary cell walls. Although important for plants, it is also synthesized by most algae, some bacteria, and some animals. Worldwide, 2 × 1011 tons of cellulose microfibrils are produced, which serves as a critical source of renewable biofuels and other biological-based products, such as lumber, fuel, fodder, paper and cotton.
Purpose of cellulose
Cellulose microfibrils A microfibril is a very fine fibril, or fiber-like strand, consisting of glycoproteins and cellulose. It is usually, but not always, used as a general term in describing the structure of protein fiber, e.g. hair and sperm tail. Its most frequently ...
are made on the surface of cell membranes to reinforce cells walls, which has been researched extensively by plant biochemists and cell biologist because 1) they regulate cellular morphogenesis and 2) they serve alongside many other constituents (i.e. lignin
Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidit ...
, hemicellulose
A hemicellulose (also known as polyose) is one of a number of heteropolymers (matrix polysaccharides), such as arabinoxylans, present along with cellulose in almost all embryophyte, terrestrial plant cell walls. Cellulose is crystalline, strong, an ...
, pectin
Pectin ( ': "congealed" and "curdled") is a heteropolysaccharide, a structural polymer contained in the primary lamella, in the middle lamella, and in the cell walls of terrestrial plants. The principal chemical component of pectin is galact ...
) in the cell wall as a strong structural support and cell shape. Without these support structures, cell growth would cause a cell to swell and spread in all directions, thus losing its shape viability
Structure
Several structures of the bacterial cellulose synthase BcsAB has been resolved. The bacterial enzyme consists of two different subunits, the catalytic BcsA on the cytoplasmic side, and the regulatory BcsB on the periplasmic side. They are coupled by a series of transmembrane helices, termed by the CATH database as 4p02A01 and 4p02B05. (Divisions for other models, such as , follow similarly.) The enzyme is stimulated by cyclic di-GMP. ''In vivo'' but not ''in vitro'', a third subunit called BcsC made up of a 18-strand beta barrel is required. Some bacteria contain extra non-essential periplasmic subunits.
BcsA follows a layout of cytoplasmic domains sandwiched between the N- and C-terminal transmembrane domain. It has a typical family 2 GT domain (4p02A02) with a GT-A fold structure. At the C-terminal end is a PilZ domain conserved in bacteria, which forms part of the cyclic di-GMP binding surface together with BcsB and the beta-barrel (4p02A03) domain. Besides the C-terminal TM domain, BcsB is made up of two repeats, each consisting of a carbohydrate-binding module 27 (CATH 2.60.120.260) and an alpha-beta sandwith (CATH 3.30.379.20).
BcsA and BcsB together form a channel through which the synthesized cellulose exits the cell, and mutations to residues lining the channel are known to reduce the activity of this enzyme. A gating loop in BcsA closes over the channel; it opens when cyclic di-GMP is bound to the enzyme.
Plants
In plants, cellulose is synthesized by large cellulose synthase complexes (CSCs), which consist of synthase protein isoform
A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene and are the result of genetic differences. While many perform the same or similar biological roles, some isoforms have uniqu ...
s (CesA) that are arranged into a unique hexagonal structure known as a “particle rosette” 50 nm wide and 30–35 nm tall. There are more than 20 of these full-length integral membrane proteins
An integral, or intrinsic, membrane protein (IMP) is a type of membrane protein that is permanently attached to the biological membrane. All transmembrane proteins can be classified as IMPs, but not all IMPs are transmembrane proteins. IMPs com ...
, each of which is around 1000 amino acids
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the Proteinogenic amino acid, 22 α-amino acids incorporated into p ...
long. These rosettes, formerly known as granules, were first discovered in 1972 by electron microscopy in green algae species '' Cladophora'' and '' Chaetomorpha'' (Robinson et al. 1972). Solution x-ray scattering have shown that CesAs are at the surface of a plant cell and are elongated monomers with a two catalytic domains that fuse together into dimers. The center of the dimers is the main point of catalytic activity, and the lobes are presumed to contain the plant specific PC-R and CS-R.[ Since cellulose is made in all cell walls, CesA proteins are present in all tissues and cell types of plants. Nonetheless, there are different types of CesA, some tissue types may have varying concentrations of one over another. For example, the AtCesA1 (RSW1) protein is involved in the biosynthesis of primary cell walls throughout the whole plant while the AtCesA7 (IRX3) protein is only expressed in the stem for secondary cell wall production.]
Compared to the bacterial enzyme, plant versions of the synthase are much harder to crystallize, and as of August 2019 no experimental atomic structures of the plant cellulose synthase catalytic domain is known. However, at least two high-confidence structures have been predicted for these enzymes.[ The broader of the two structures (Sethaphong 2013), which includes the entire middle cytoplasmic domain (again sandwiched between TM helices), gives a useful view of the enzyme: two plant-specific insertions called the PC-R (plant-conserved region, similar in all plants) on the N-terminal end and CS-R (class-specific region, determines the subclass number after CesA) on the C-terminal end punctuate the usual GT catalytic core, probably providing the unique rosette-forming function of plant CesA.][ (Some CesA proteins possess an additional insertion.) The structure seems to explain the effects of many known mutations. The positioning of the two insertions, however, do not match the scattering result from Olek 2014.] A 2016 experimental model of the PC-R () domain helps to fill in this gap, as it greatly improves the fit against Olek's previous result. It also matches the Sethaphong 2015 prediction of an antiparallel coiled-coil well. The two groups continue to further their understandings of the ''CesA'' structure, with Olek et al focusing on experimental structures and Sethaphong et al focusing on plant studies and building better computer models.
Other differences from the bacterial ''BcsA'' includes a different TM helice count (''BcsA'' has 4 helices on each end; ''CesA'' has two on the N-terminal and 6 on the C-terminal), and the presence of a zinc finger () at the N-terminus.[
]
Activity
Cellulose biosynthesis is the process during which separate homogeneous β-(1→4)-glucan chains, ranging from 2,000 to 25,000 glucose residues in length, are synthesized and then immediately hydrogen bond with one another to form rigid crystalline arrays, or microfibrils. Microfibrils in the primary cell wall are approximately 36 chains long while those of the secondary cell wall are much larger, containing up to 1200 β-(1→4)-glucan chains. Uridine diphosphate-glucose (UDP), which is produced by the enzyme sucrose synthase (SuSy) that produces and transports UDP-glucose to the plasma membrane
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
is the substrate used by cellulose synthase to produce the glucan chains. The rate at which glucose residues are synthesized per one glucan chain ranges from 300 to 1000 glucose residues per minute, the higher rate being more prevalent in secondary wall particles, such as in the xylem.
Supporting structures
Microfibril synthesis is guided by cortical microtubules
Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 an ...
, which lie beneath the plasma membrane of elongating cells, in that they form a platform on which the CSCs can convert glucose molecules into the crystalline chains. The microtubule–microfibril alignment hypothesis proposes that cortical microtubules, which lie beneath the plasma membrane of elongating cells, provide tracks for CSCs that convert glucose molecules into crystalline cellulose microfibrils. The direct hypothesis postulates some types of direct linkage between CESA complexes and microtubules. Additionally, the KORRIGAN (KOR1) protein is thought to be a critical component of cellulose synthesis in that it acts as a cellulase at the plasma membrane-cell wall interface. KOR1 interacts with a two specific CesA proteins, possibly by proof-reading and relieving stress created by glucan chain synthesis, by hydrolyzing disordered amorphous cellulose.
Environmental influences
Cellulose synthesis activity is affected by many environmental stimuli, such as hormones, light, mechanical stimuli, nutrition, and interactions with the cytoskeleton
The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is compos ...
. Interactions with these factors may influence cellulose deposition in that it affects the amount of substrate produced and the concentration and/or activity of CSCs in the plasma membrane.
References
Further reading
*
{{Portal bar, Biology, border=no
EC 2.4.1
Enzymes of known structure