The barycentric celestial reference system (BCRS) is a coordinate system used in
astrometry
Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, the Milky Way.
His ...
to specify the location and motions of astronomical objects. It was created in 2000 by the
International Astronomical Union
The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreac ...
(IAU) to be the global standard reference system for objects located outside the gravitational vicinity of
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
:
planets, moons, and other Solar System bodies, stars and other objects in the
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
galaxy, and extra-galactic objects.
The geocentric celestial reference system (GCRS), also created by the IAU in 2000, is a similar standard coordinate system used to specify the location and motions of
near-Earth objects
A near-Earth object (NEO) is any small Solar System body whose orbit brings it into proximity with Earth. By convention, a Solar System body is a NEO if its closest approach to the Sun (perihelion) is less than 1.3 astronomical units (AU). ...
, such as satellites.
[
These systems make it easier for scientists and engineers to compile, share, compare, and convert accurate measurements worldwide, by establishing standards both of measure and of methodology, and providing a consistent framework of operations. The focus of the BCRS is on astronomy: exploration of the ]Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
and the universe. The BCRS is the system currently used for expressing positional data in astronomical references, such as the Hipparcos star catalog.
The focus of the GCRS is somewhat more on the navigation of Earth satellites and the geophysical applications they support. The proper functioning of the Global Positioning System
The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite sy ...
(GPS) is directly dependent upon the accuracy of satellite measurements as supported by the GCRS.
Purpose and implementation
The BCRS was designed to support the extremely-high-precision measurements of position and motion required in astrometry.[ One critical factor in achieving that precision lies in how general relativistic effects are determined and measured. Both systems incorporate standards that enable the consistency and ready comparability of the resulting ]spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
coordinates among astrometric measurements taken worldwide. They provide a metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
to establish a consistent frame of reference
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points― geometric points whose position is identified both mathema ...
for observations. The tensor achieves consistency in part through its standardization of the reference point for gravity.
The geocentric system is simpler, being smaller and involving few massive objects: that coordinate system defines its center as the center of mass
In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
of the Earth itself. The barycentric system can be loosely thought of as being centered on the Sun, but the Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
is more complicated. Even the much smaller planets exert gravitational force upon the Sun, causing it to shift position slightly as they orbit. Those shifts are very large in comparison to the measurement precisions that are required for astrometry. Thus, the BCRS defines its center of coordinates as the center of mass of the entire Solar System, its barycenter. This stable point for gravity helps to minimize relativistic effects from any observational frames of reference within the Solar System.
Relationship to other standards
ICRS
The orientation of the BCRS coordinate system coincides with that of the ''International Celestial Reference System
The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to "sho ...
'' (ICRS). Both are centered at the barycenter of the Solar System, and both "point" in the same direction. That is, their axes are aligned with that of the '' International Celestial Reference Frame'' (ICRF), which was adopted as a standard by the IAU two years earlier (1998). The motivation of the ICRF is to define what "direction" means in space, by fixing its orientation in relation to the Celestial sphere
In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, ...
, that is, to deep-space background. Speaking casually, it does not move in relation to the stars and galaxies; it does not rotate.
Determining perfect immobilization of direction is not possible in practice, but we can get much closer than it is even possible for us to measure. The more distant an object is, the less its direction appears to move in relation to us (the parallax
Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby objects ...
effect). The ICRF thus uses very distant objects, well outside our galaxy, to establish its directional points of reference. The chosen objects also emit radio wave
Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (short ...
lengths, which are less subject than other wavelengths to being obscured by celestial gas in front of them. The ICRF adopts coordinates for 212 defining objects, mostly quasar
A quasar is an extremely Luminosity, luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a m ...
s, fixing its orientation with respect to them.
HCRF
The '' ''Hipparcos'' Celestial Reference Frame'' (HCRF) was similar to ICRF, but earlier, used in association with the ''Hipparcos
''Hipparcos'' was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial obj ...
'' satellite, which functioned between 1989 and 1993. That satellite took copious stellar parallax
Stellar parallax is the apparent shift of position of any nearby star (or other object) against the background of distant objects, and a basis for determining (through trigonometry) the distance of the object. Created by the different orbital p ...
measurements at accuracies exceeding anything otherwise available at the time, thus producing a catalog of stars still in wide use today. No such extensive mapping has yet been completed based upon subsequent improvements in measurement capability. With lower precision then, and at optical wavelengths, the ICRS and BCRS can also be specified using the HCRF. That is the means by which BCRS can be used in relation to the Hipparcos star catalog.
Conversion of coordinates
The BCRS and GCRS were also designed so as to make transformations of their coordinates between themselves and other reference systems possible, though the conversions are not by any means straightforward. There are two software libraries of IAU-sanctioned algorithms for manipulating and transforming among the BCRS and other reference systems: the ''Standards of Fundamental Astronomy'' ( SOFA) system and the Naval Observatory Vector Astrometry Subroutines (NOVAS).[
The orientation of the BCRS/ICRS axes also align within 0.02 ]arcsecond
A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The na ...
of the Earth's mean equator and equinox for the Fifth Fundamental Catalog (FK5) J2000.0
In astronomy, an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body, as they are subject to pertu ...
epoch.
See also
* Barycentric Coordinate Time
Barycentric Coordinate Time (TCB, from the French Temps-coordonnée barycentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and ...
* Geocentric Coordinate Time
Geocentric Coordinate Time (TCG - Temps-coordonnée géocentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to precession, nutation, the Moon, and artificial satellites ...
* Earth-centered inertial
Earth-centered inertial (ECI) coordinate frames have their origins at the center of mass of Earth and are fixed with respect to the stars. "I" in "ECI" stands for inertial (i.e. "not accelerating"), in contrast to the "Earth-centered - Earth- ...
* ''Gaia'' Celestial Reference Frame
* Topocentric coordinates
References
Further reading
IAU (2000), Resolution B1.3: Definition of barycentric celestial reference system and geocentric celestial reference system
External links
Standards of Fundamental Astronomy (SOFA)
Naval Observatory Vector Astrometry Software (NOVAS)
{{Portal bar, Astronomy, Stars, Spaceflight, Outer space, Solar System
Astronomical coordinate systems
Astrometry