set theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all
ordered pair
In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In co ...
s where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of
set-builder notation
In set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy.
Definin ...
, that is
:
A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form .
One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''-
tuple
In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an
indexed family
In mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a ''family of real numbers, indexed by the set of integers'' is a collection of real numbers, whe ...
of sets.
The Cartesian product is named after
René Descartes
René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Mathe ...
, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of
direct product
In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one t ...
.
Examples
A deck of cards
An illustrative example is the
standard 52-card deck
The standard 52-card deck of French-suited playing cards is the most common pack of playing cards used today. In English-speaking countries it is the only traditional pack used for playing cards; in many countries of the world, however, it is use ...
. The standard playing card ranks form a 13-element set. The card suits form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52
ordered pairs
In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In co ...
, which correspond to all 52 possible playing cards.
returns a set of the form .
returns a set of the form .
These two sets are distinct, even
disjoint
Disjoint may refer to:
*Disjoint sets, sets with no common elements
*Mutual exclusivity, the impossibility of a pair of propositions both being true
See also
*Disjoint union
*Disjoint-set data structure
{{disambig
Cardinality
The
cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of a set is the number of elements of the set. For example, defining two sets: and Both set ''A'' and set ''B'' consist of two elements each. Their Cartesian product, written as , results in a new set which has the following elements:
: ''A'' × ''B'' = .
where each element of ''A'' is paired with each element of ''B'', and where each pair makes up one element of the output set.
The number of values in each element of the resulting set is equal to the number of sets whose Cartesian product is being taken; 2 in this case.
The cardinality of the output set is equal to the product of the cardinalities of all the input sets. That is,
: , ''A'' × ''B'', = , ''A'', · , ''B'', .
In this case, , ''A'' × ''B'', = 4
Similarly
: , ''A'' × ''B'' × ''C'', = , ''A'', · , ''B'', · , ''C'',
and so on.
The set is
infinite
Infinite may refer to:
Mathematics
*Infinite set, a set that is not a finite set
*Infinity, an abstract concept describing something without any limit
Music
*Infinite (group)
Infinite ( ko, 인피니트; stylized as INFINITE) is a South Ko ...
if either ''A'' or ''B'' is infinite, and the other set is not the empty set.
Cartesian products of several sets
''n''-ary Cartesian product
The Cartesian product can be generalized to the ''n''-ary Cartesian product over ''n'' sets ''X''1, ..., ''Xn'' as the set
:
of ''n''-tuples. If tuples are defined as nested ordered pairs, it can be identified with . If a tuple is defined as a function on that takes its value at ''i'' to be the ''i''th element of the tuple, then the Cartesian product ''X''1×⋯×''X''''n'' is the set of functions
:
''n''-ary Cartesian power
The Cartesian square of a set ''X'' is the Cartesian product .
An example is the 2-dimensional
plane
Plane(s) most often refers to:
* Aero- or airplane, a powered, fixed-wing aircraft
* Plane (geometry), a flat, 2-dimensional surface
Plane or planes may also refer to:
Biology
* Plane (tree) or ''Platanus'', wetland native plant
* ''Planes'' ...
where R is the set of
real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s: R2 is the set of all points where ''x'' and ''y'' are real numbers (see the
Cartesian coordinate system
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured ...
).
The ''n''-ary Cartesian power of a set ''X'', denoted , can be defined as
:
An example of this is , with R again the set of real numbers, and more generally R''n''.
The ''n''-ary Cartesian power of a set ''X'' is isomorphic to the space of functions from an ''n''-element set to ''X''. As a special case, the 0-ary Cartesian power of ''X'' may be taken to be a
singleton set
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0.
Properties
Within the framework of Zermelo–Fraenkel set theory, t ...
, corresponding to the
empty function
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the func ...
with
codomain
In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either ...
''X''.
Infinite Cartesian products
It is possible to define the Cartesian product of an arbitrary (possibly
infinite
Infinite may refer to:
Mathematics
*Infinite set, a set that is not a finite set
*Infinity, an abstract concept describing something without any limit
Music
*Infinite (group)
Infinite ( ko, 인피니트; stylized as INFINITE) is a South Ko ...
)
indexed family
In mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a ''family of real numbers, indexed by the set of integers'' is a collection of real numbers, whe ...
of sets. If ''I'' is any
index set
In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set may be ''indexed'' or ''labeled'' by means of the elements of a set , then is an index set. The indexing consis ...
, and is a family of sets indexed by ''I'', then the Cartesian product of the sets in is defined to be
:
that is, the set of all functions defined on the
index set
In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set may be ''indexed'' or ''labeled'' by means of the elements of a set , then is an index set. The indexing consis ...
such that the value of the function at a particular index ''i'' is an element of ''Xi''. Even if each of the ''Xi'' is nonempty, the Cartesian product may be empty if the
axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, which is equivalent to the statement that every such product is nonempty, is not assumed.
For each ''j'' in ''I'', the function
:
defined by is called the ''j''th
projection map
In mathematics, a projection is a mapping of a set (or other mathematical structure) into a subset (or sub-structure), which is equal to its square for mapping composition, i.e., which is idempotent. The restriction to a subspace of a project ...
.
Cartesian power is a Cartesian product where all the factors ''Xi'' are the same set ''X''. In this case,
:
is the set of all functions from ''I'' to ''X'', and is frequently denoted ''XI''. This case is important in the study of
cardinal exponentiation
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of Set (mathematics), sets. The cardinality of a finite set is a natural number: the number of elemen ...
. An important special case is when the index set is , the
natural numbers
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
: this Cartesian product is the set of all infinite sequences with the ''i''th term in its corresponding set ''Xi''. For example, each element of
:
can be visualized as a
vector
Vector most often refers to:
*Euclidean vector, a quantity with a magnitude and a direction
*Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematic ...
with countably infinite real number components. This set is frequently denoted , or .
Other forms
Abbreviated form
If several sets are being multiplied together (e.g., ''X''1, ''X''2, ''X''3, …), then some authorsOsborne, M., and Rubinstein, A., 1994. ''A Course in Game Theory''. MIT Press. choose to abbreviate the Cartesian product as simply ×''X''''i''.
Cartesian product of functions
If ''f'' is a function from ''X'' to ''A'' and ''g'' is a function from ''Y'' to ''B'', then their Cartesian product is a function from to with
:
This can be extended to
tuple
In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
s and infinite collections of functions.
This is different from the standard Cartesian product of functions considered as sets.
Cylinder
Let be a set and . Then the ''cylinder'' of with respect to is the Cartesian product of and .
Normally, is considered to be the
universe
The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. A ...
of the context and is left away. For example, if is a subset of the natural numbers , then the cylinder of is .
Definitions outside set theory
Category theory
Although the Cartesian product is traditionally applied to sets, category theory provides a more general interpretation of the
product
Product may refer to:
Business
* Product (business), an item that serves as a solution to a specific consumer problem.
* Product (project management), a deliverable or set of deliverables that contribute to a business solution
Mathematics
* Prod ...
of mathematical structures. This is distinct from, although related to, the notion of a
Cartesian square
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\ti ...
in category theory, which is a generalization of the
fiber product
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is ofte ...
.
Exponentiation
Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to re ...
is the
right adjoint
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kn ...
of the Cartesian product; thus any category with a Cartesian product (and a
final object
In category theory, a branch of mathematics, an initial object of a category (mathematics), category is an object in such that for every object in , there exists precisely one morphism .
The dual (category theory), dual notion is that of a t ...
) is a
Cartesian closed category
In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in ...
.
Graph theory
In
graph theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
vertex
Vertex, vertices or vertexes may refer to:
Science and technology Mathematics and computer science
*Vertex (geometry), a point where two or more curves, lines, or edges meet
*Vertex (computer graphics), a data structure that describes the position ...
set is the (ordinary) Cartesian product and such that two vertices (''u'',''v'') and (''u''′,''v''′) are adjacent in , if and only if and ''v'' is adjacent with ''v''′ in ''H'', ''or'' and ''u'' is adjacent with ''u''′ in ''G''. The Cartesian product of graphs is not a
product
Product may refer to:
Business
* Product (business), an item that serves as a solution to a specific consumer problem.
* Product (project management), a deliverable or set of deliverables that contribute to a business solution
Mathematics
* Prod ...
in the sense of category theory. Instead, the categorical product is known as the
tensor product of graphs
In graph theory, the tensor product of graphs and is a graph such that
* the vertex set of is the Cartesian product ; and
* vertices and are adjacent in if and only if
** is adjacent to in , and
** is adjacent to in .
The tensor pro ...
.
See also
*
Binary relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
Coproduct
In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The cop ...
*
Cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and i ...
*
Direct product of groups
In mathematics, specifically in group theory, the direct product is an operation that takes two groups and and constructs a new group, usually denoted . This operation is the group-theoretic analogue of the Cartesian product of sets and is o ...
*
Empty product
In mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors. It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in questio ...
*
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
*
Exponential object
In mathematics, specifically in category theory, an exponential object or map object is the categorical generalization of a function space in set theory. Categories with all finite products and exponential objects are called cartesian closed ca ...
*
Finitary relation
In mathematics, a finitary relation over sets is a subset of the Cartesian product ; that is, it is a set of ''n''-tuples consisting of elements ''x'i'' in ''X'i''. Typically, the relation describes a possible connection between the eleme ...
Axiom of power set
In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory.
In the formal language of the Zermelo–Fraenkel axioms, the axiom reads:
:\forall x \, \exists y \, \forall z \, \in y \iff \forall w ...
(to prove the existence of the Cartesian product)
*
Product (category theory)
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or ri ...
*
Product topology
In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seem ...
*
Product type
In programming languages and type theory, a product of ''types'' is another, compounded, type in a structure. The "operands" of the product are types, and the structure of a product type is determined by the fixed order of the operands in the produ ...
*
Ultraproduct
The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All factor ...