
In
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
, a branch of
mathematics, the Carmichael function of a
positive integer
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
is the smallest positive integer such that
:
holds for every integer
coprime
In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equival ...
to . In algebraic terms, is the
exponent
Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to re ...
of the
multiplicative group of integers modulo .
The Carmichael function is named after the American mathematician
Robert Carmichael
Robert Daniel Carmichael (March 1, 1879 – May 2, 1967) was an American mathematician.
Biography
Carmichael was born in Goodwater, Alabama. He attended Lineville College, briefly, and he earned his bachelor's degree in 1898, while he was st ...
who defined it in 1910. It is also known as Carmichael's λ function, the reduced totient function, and the least universal exponent function.
The following table compares the first 36 values of with
Euler's totient function
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In ...
(in bold if they are different; the s such that they are different are listed in ).
Numerical examples
# Carmichael's function at 5 is 4, , because for any number