HOME





Primitive Root Modulo N
In modular arithmetic, a number is a primitive root modulo  if every number coprime to is congruent to a power of modulo . That is, is a ''primitive root modulo''  if for every integer coprime to , there is some integer for which ≡ (mod ). Such a value is called the index or discrete logarithm of to the base modulo . So is a ''primitive root modulo''  if and only if is a generator of the multiplicative group of integers modulo . Gauss defined primitive roots in Article 57 of the '' Disquisitiones Arithmeticae'' (1801), where he credited Euler with coining the term. In Article 56 he stated that Lambert and Euler knew of them, but he was the first to rigorously demonstrate that primitive roots exist for a prime . In fact, the ''Disquisitiones'' contains two proofs: The one in Article 54 is a nonconstructive existence proof, while the proof in Article 55 is constructive. A primitive root exists if and only if ''n'' is 1, 2, 4, ''p''''k'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carmichael Function
In number theory, a branch of mathematics, the Carmichael function of a positive integer is the smallest positive integer such that :a^m \equiv 1 \pmod holds for every integer coprime to . In algebraic terms, is the exponent of a group, exponent of the multiplicative group of integers modulo n, multiplicative group of integers modulo . As this is a Abelian group#Finite abelian groups, finite abelian group, there must exist an element whose Cyclic group#Definition and notation, order equals the exponent, . Such an element is called a primitive -root modulo . The Carmichael function is named after the American mathematician Robert Daniel Carmichael, Robert Carmichael who defined it in 1910. It is also known as Carmichael's λ function, the reduced totient function, and the least universal exponent function. The order of the multiplicative group of integers modulo is , where is Euler's totient function. Since the order of an element of a finite group divides the order of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artin's Conjecture On Primitive Roots
In number theory, Artin's conjecture on primitive roots states that a given integer ''a'' that is neither a square number nor −1 is a primitive root modulo infinitely many primes ''p''. The conjecture also ascribes an asymptotic density to these primes. This conjectural density equals Artin's constant or a rational multiple thereof. The conjecture was made by Emil Artin to Helmut Hasse on September 27, 1927, according to the latter's diary. The conjecture is still unresolved as of 2025. In fact, there is no single value of ''a'' for which Artin's conjecture is proved. Formulation Let ''a'' be an integer that is not a square number and not −1. Write ''a'' = ''a''0''b''2 with ''a''0 square-free. Denote by ''S''(''a'') the set of prime numbers ''p'' such that ''a'' is a primitive root modulo ''p''. Then the conjecture states # ''S''(''a'') has a positive asymptotic density inside the set of primes. In particular, ''S''(''a'') is infinite. # Under the conditions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Möbius Function
The Möbius function \mu(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted \mu(x). Definition The Möbius function is defined by :\mu(n) = \begin 1 & \text n = 1 \\ (-1)^k & \text n \text k \text \\ 0 & \text n \text > 1 \end The Möbius function can alternatively be represented as : \mu(n) = \delta_ \lambda(n), where \delta_ is the Kronecker delta, \lambda(n) is the Liouville function, Prime omega function, \omega(n) is the number of distinct prime divisors of n, and Prime omega function, \Omega(n) is the number of prime factors of n, counted with multiplicity. Another characterization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Torsion Group
In group theory, a branch of mathematics, a torsion group or a periodic group is a group in which every element has finite order. The exponent of such a group, if it exists, is the least common multiple of the orders of the elements. For example, it follows from Lagrange's theorem that every finite group is periodic and it has an exponent that divides its order. Infinite examples Examples of infinite periodic groups include the additive group of the ring of polynomials over a finite field, and the quotient group of the rationals by the integers, as well as their direct summands, the Prüfer groups. Another example is the direct sum of all dihedral groups. None of these examples has a finite generating set. Explicit examples of finitely generated infinite periodic groups were constructed by Golod, based on joint work with Shafarevich (see '' Golod–Shafarevich theorem''), and by Aleshin and Grigorchuk using automata. These groups have infinite exponent; examples with fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

OEIS
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the OEIS Foundation in 2009, and is its chairman. OEIS records information on integer sequences of interest to both professional and amateur mathematicians, and is widely cited. , it contains over 370,000 sequences, and is growing by approximately 30 entries per day. Each entry contains the leading terms of the sequence, keywords, mathematical motivations, literature links, and more, including the option to generate a graph or play a musical representation of the sequence. The database is searchable by keyword, by subsequence, or by any of 16 fields. There is also an advanced search function called SuperSeeker which runs a large number of different algorithms to identify sequences related to the input. History Neil Sloane started coll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Order
In number theory, given a positive integer ''n'' and an integer ''a'' coprime to ''n'', the multiplicative order of ''a'' modulo ''n'' is the smallest positive integer ''k'' such that a^k\ \equiv\ 1 \pmod n. In other words, the multiplicative order of ''a'' modulo ''n'' is the order of ''a'' in the multiplicative group of the units in the ring of the integers modulo ''n''. The order of ''a'' modulo ''n'' is sometimes written as \operatorname_n(a). Example The powers of 4 modulo 7 are as follows: : \begin 4^0 &= 1 &=0 \times 7 + 1 &\equiv 1\pmod7 \\ 4^1 &= 4 &=0 \times 7 + 4 &\equiv 4\pmod7 \\ 4^2 &= 16 &=2 \times 7 + 2 &\equiv 2\pmod7 \\ 4^3 &= 64 &=9 \times 7 + 1 &\equiv 1\pmod7 \\ 4^4 &= 256 &=36 \times 7 + 4 &\equiv 4\pmod7 \\ 4^5 &= 1024 &=146 \times 7 + 2 &\equiv 2\pmod7 \\ \vdots\end The smallest positive integer ''k'' such that 4''k'' ≡ 1 (mod 7) is 3, so the order of 4 (mod 7) is 3. Properties Even without knowledge that we are working in the multiplicative ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler's Theorem
In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem) states that, if and are coprime positive integers, then a^ is congruent to 1 modulo , where \varphi denotes Euler's totient function; that is :a^ \equiv 1 \pmod. In 1736, Leonhard Euler published a proof of Fermat's little theorem (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where is not prime. The converse of Euler's theorem is also true: if the above congruence is true, then a and n must be coprime. The theorem is further generalized by some of Carmichael's theorems. The theorem may be used to easily reduce large powers modulo n. For example, consider finding the ones place decimal digit of 7^, i.e. 7^ \pmod. The integers 7 and 10 are coprime, and \varphi( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler's Totient Function
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In other words, it is the number of integers in the range for which the greatest common divisor is equal to 1. The integers of this form are sometimes referred to as totatives of . For example, the totatives of are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since and . Therefore, . As another example, since for the only integer in the range from 1 to is 1 itself, and . Euler's totient function is a multiplicative function, meaning that if two numbers and are relatively prime, then . This function gives the order of the multiplicative group of integers modulo (the group of units of the ring \Z/n\Z). It is also used for defining the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root Of Unity Modulo N
In number theory, a ''k''th root of unity modulo ''n'' for positive integers ''k'', ''n'' ≥ 2, is a root of unity in the ring of integers modulo ''n''; that is, a solution ''x'' to the equation (or ''congruence'') x^k \equiv 1 \pmod. If ''k'' is the smallest such exponent for ''x'', then ''x'' is called a primitive ''k''th root of unity modulo ''n''. See modular arithmetic for notation and terminology. The roots of unity modulo are exactly the integers that are coprime with . In fact, these integers are roots of unity modulo by Euler's theorem, and the other integers cannot be roots of unity modulo , because they are zero divisors modulo . A primitive root modulo , is a generator of the group of units of the ring of integers modulo . There exist primitive roots modulo if and only if \lambda(n)=\varphi(n), where \lambda and \varphi are respectively the Carmichael function and Euler's totient function. A root of unity modulo is a primitive th root of unity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generating Set Of A Group
In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group (mathematics), group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their Inverse element, inverses. In other words, if S is a subset of a group G, then \langle S\rangle, the ''subgroup generated by S'', is the smallest subgroup of G containing every element of S, which is equal to the intersection over all subgroups containing the elements of S; equivalently, \langle S\rangle is the subgroup of all elements of G that can be expressed as the finite product of elements in S and their inverses. (Note that inverses are only needed if the group is infinite; in a finite group, the inverse of an element can be expressed as a power of that element.) If G=\langle S\rangle, then we say that S ''generates'' G, and the elements in S are called ''generators'' or ''group generators''. If S is the empty set, then \langle S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]