HOME

TheInfoList



OR:

Carbon dioxide is a
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
with the
chemical formula A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as pare ...
. It is made up of
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s that each have one
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
atom covalently
double bond In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist betw ...
ed to two
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
atoms. It is found in a gas state at room temperature and at normally-encountered concentrations it is odorless. As the source of carbon in the
carbon cycle The carbon cycle is a part of the biogeochemical cycle where carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Other major biogeochemical cycles include the nitrogen cycle and the water cycl ...
, atmospheric is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs
infrared radiation Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
, acting as a
greenhouse gas Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. Unlike other gases, greenhouse gases absorb the radiations that a planet emits, resulting in the greenhouse effect. T ...
. Carbon dioxide is soluble in water and is found in
groundwater Groundwater is the water present beneath Earth's surface in rock and Pore space in soil, soil pore spaces and in the fractures of stratum, rock formations. About 30 percent of all readily available fresh water in the world is groundwater. A unit ...
,
lake A lake is often a naturally occurring, relatively large and fixed body of water on or near the Earth's surface. It is localized in a basin or interconnected basins surrounded by dry land. Lakes lie completely on land and are separate from ...
s,
ice cap In glaciology, an ice cap is a mass of ice that covers less than of land area (usually covering a highland area). Larger ice masses covering more than are termed ice sheets. Description By definition, ice caps are not constrained by topogra ...
s, and
seawater Seawater, or sea water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has approximat ...
. It is a
trace gas Trace gases are gases that are present in small amounts within an environment such as a planet's atmosphere. Trace gases in Earth's atmosphere are gases other than nitrogen (78.1%), oxygen (20.9%), and argon (0.934%) which, in combination, make u ...
in Earth's atmosphere at 421 
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe the small values of miscellaneous dimensionless quantity, dimensionless quantities, e.g. mole fraction or mass fraction (chemistry), mass fraction. Since t ...
(ppm), or about 0.042% (as of May 2022) having risen from pre-industrial levels of 280 ppm or about 0.028%. Burning
fossil fuel A fossil fuel is a flammable carbon compound- or hydrocarbon-containing material formed naturally in the Earth's crust from the buried remains of prehistoric organisms (animals, plants or microplanktons), a process that occurs within geolog ...
s is the main cause of these increased concentrations, which are the primary cause of
climate change Present-day climate change includes both global warming—the ongoing increase in Global surface temperature, global average temperature—and its wider effects on Earth's climate system. Climate variability and change, Climate change in ...
.IPCC (2022
Summary for policy makers
i
Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
Cambridge University Press, Cambridge, United Kingdom and New York, NY, US
Its
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
in Earth's pre-industrial atmosphere since late in the
Precambrian The Precambrian ( ; or pre-Cambrian, sometimes abbreviated pC, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of t ...
was regulated by organisms and geological features.
Plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s,
algae Algae ( , ; : alga ) is an informal term for any organisms of a large and diverse group of photosynthesis, photosynthetic organisms that are not plants, and includes species from multiple distinct clades. Such organisms range from unicellular ...
and
cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
use
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
from
sunlight Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
to synthesize
carbohydrate A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
s from carbon dioxide and water in a process called
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
, which produces oxygen as a waste product. In turn, oxygen is consumed and is released as waste by all
aerobic organism An aerobic organism or aerobe is an organism that can survive and grow in an oxygenated environment. The ability to exhibit aerobic respiration may yield benefits to the aerobic organism, as aerobic respiration yields more energy than anaerobic ...
s when they metabolize
organic compound Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
s to produce energy by
respiration Respiration may refer to: Biology * Cellular respiration, the process in which nutrients are converted into useful energy in a cell ** Anaerobic respiration, cellular respiration without oxygen ** Maintenance respiration, the amount of cellul ...
. is released from organic materials when they
decay Decay may refer to: Science and technology * Bit decay, in computing * Decay time (fall time), in electronics * Distance decay, in geography * Software decay, in computing Biology * Decomposition of organic matter * Mitochondrial decay, in g ...
or combust, such as in forest fires. When carbon dioxide dissolves in water, it forms
carbonate A carbonate is a salt of carbonic acid, (), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate group ...
and mainly
bicarbonate In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula . Bicarbonate serves a crucial bioche ...
(), which causes
ocean acidification Ocean acidification is the ongoing decrease in the pH of the Earth's ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ...
as atmospheric levels increase. Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. About half of excess emissions to the atmosphere are absorbed by
land Land, also known as dry land, ground, or earth, is the solid terrestrial surface of Earth not submerged by the ocean or another body of water. It makes up 29.2% of Earth's surface and includes all continents and islands. Earth's land sur ...
and ocean
carbon sink A carbon sink is a natural or artificial carbon sequestration process that "removes a  greenhouse gas, an aerosol or a precursor of a greenhouse gas from the atmosphere". These sinks form an important part of the natural carbon cycle. An overar ...
s. These sinks can become saturated and are volatile, as decay and
wildfire A wildfire, forest fire, or a bushfire is an unplanned and uncontrolled fire in an area of Combustibility and flammability, combustible vegetation. Depending on the type of vegetation present, a wildfire may be more specifically identified as a ...
s result in the being released back into the atmosphere. , or the carbon it holds, is eventually sequestered (stored for the long term) in rocks and organic deposits like
coal Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other Chemical element, elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal i ...
,
petroleum Petroleum, also known as crude oil or simply oil, is a naturally occurring, yellowish-black liquid chemical mixture found in geological formations, consisting mainly of hydrocarbons. The term ''petroleum'' refers both to naturally occurring un ...
and
natural gas Natural gas (also fossil gas, methane gas, and gas) is a naturally occurring compound of gaseous hydrocarbons, primarily methane (95%), small amounts of higher alkanes, and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium ...
. Nearly all produced by humans goes into the atmosphere. Less than 1% of produced annually is put to commercial use, mostly in the fertilizer industry and in the oil and gas industry for
enhanced oil recovery Enhanced oil recovery (abbreviated EOR), also called tertiary recovery, is the extraction of crude oil from an oil field that cannot be extracted after primary and secondary recovery methods have been completely exhausted. Whereas primary and se ...
. Other commercial applications include food and beverage production, metal fabrication, cooling, fire suppression and stimulating plant growth in greenhouses.


Chemical and physical properties


Structure, bonding and molecular vibrations

The
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
of a carbon dioxide molecule is linear and
centrosymmetric In crystallography, a centrosymmetric point group contains an inversion center as one of its symmetry elements. In such a point group, for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z). Such point grou ...
at its equilibrium geometry. The
length Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, ...
of the carbon–oxygen bond in carbon dioxide is 116.3  pm, noticeably shorter than the roughly 140 pm length of a typical single C–O bond, and shorter than most other C–O multiply bonded
functional group In organic chemistry, a functional group is any substituent or moiety (chemistry), moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions r ...
s such as carbonyls. Since it is centrosymmetric, the molecule has no
electric dipole moment The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall Chemical polarity, polarity. The International System of Units, SI unit for electric ...
. As a linear triatomic molecule, has four vibrational modes as shown in the diagram. In the symmetric and the antisymmetric stretching modes, the atoms move along the axis of the molecule. There are two bending modes, which are degenerate, meaning that they have the same frequency and same energy, because of the symmetry of the molecule. When a molecule touches a surface or touches another molecule, the two bending modes can differ in frequency because the interaction is different for the two modes. Some of the vibrational modes are observed in the infrared (IR) spectrum: the antisymmetric stretching mode at
wavenumber In the physical sciences, the wavenumber (or wave number), also known as repetency, is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of ...
2349 cm−1 (wavelength 4.25 Î¼m) and the degenerate pair of bending modes at 667 cm−1 (wavelength 15.0 Î¼m). The symmetric stretching mode does not create an electric dipole so is not observed in IR spectroscopy, but it is detected in
Raman spectroscopy Raman spectroscopy () (named after physicist C. V. Raman) is a Spectroscopy, spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Ra ...
at 1388 cm−1 (wavelength 7.20 μm), with a Fermi resonance doublet at 1285 cm−1. In the gas phase, carbon dioxide molecules undergo significant vibrational motions and do not keep a fixed structure. However, in a Coulomb explosion imaging experiment, an instantaneous image of the molecular structure can be deduced. Such an experiment has been performed for carbon dioxide. The result of this experiment, and the conclusion of theoretical calculations based on an
ab initio ( ) is a Latin term meaning "from the beginning" and is derived from the Latin ("from") + , ablative singular of ("beginning"). Etymology , from Latin, literally "from the beginning", from ablative case of "entrance", "beginning", related t ...
potential energy surface A potential energy surface (PES) or energy landscape describes the energy of a Physical system, system, especially a collection of atoms, in terms of certain Parameter, parameters, normally the positions of the atoms. The Surface (mathematics), ...
of the molecule, is that none of the molecules in the gas phase are ever exactly linear. This counter-intuitive result is trivially due to the fact that the nuclear motion
volume element In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form \ma ...
vanishes for linear geometries. This is so for all molecules except
diatomic molecule Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear mol ...
s.


In aqueous solution

Carbon dioxide is
soluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
in water, in which it reversibly forms (carbonic acid), which is a
weak acid Acid strength is the tendency of an acid, symbolised by the chemical formula , to dissociate into a proton, , and an anion, . The dissociation or ionization of a strong acid in solution is effectively complete, except in its most concentrated s ...
, because its ionization in water is incomplete. : The hydration equilibrium constant of carbonic acid is, at 25 Â°C: :K_\mathrm = \frac = 1.70 \times 10^ Hence, the majority of the carbon dioxide is not converted into carbonic acid, but remains as molecules, not affecting the pH. The relative concentrations of , , and the deprotonated forms (
bicarbonate In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula . Bicarbonate serves a crucial bioche ...
) and (
carbonate A carbonate is a salt of carbonic acid, (), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate group ...
) depend on the pH. As shown in a Bjerrum plot, in neutral or slightly alkaline water (pH > 6.5), the bicarbonate form predominates (>50%) becoming the most prevalent (>95%) at the pH of seawater. In very alkaline water (pH > 10.4), the predominant (>50%) form is carbonate. The oceans, being mildly alkaline with typical pH = 8.2–8.5, contain about 120 mg of bicarbonate per liter. Being diprotic, carbonic acid has two
acid dissociation constant In chemistry, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted ) is a quantitative property, quantitative measure of the acid strength, strength of an acid in Solution (chemistry), solution. I ...
s, the first one for the dissociation into the bicarbonate (also called hydrogen carbonate) ion (): : :''K''a1 = 2.5 × 10−4 mol/L; p''K''a1 = 3.6 at 25 Â°C. This is the ''true'' first acid dissociation constant, defined as :K_\mathrm = \frac where the denominator includes only covalently bound and does not include hydrated (aq). The much smaller and often-quoted value near 4.16 × 10−7 (or pKa1 = 6.38) is an ''apparent'' value calculated on the (incorrect) assumption that all dissolved is present as carbonic acid, so that :K_\mathrm=\frac Since most of the dissolved remains as molecules, ''K''a1(apparent) has a much larger denominator and a much smaller value than the true ''K''a1. The bicarbonate ion is an
amphoteric In chemistry, an amphoteric compound () is a molecule or ion that can react both as an acid and as a base. What exactly this can mean depends on which definitions of acids and bases are being used. Etymology and terminology Amphoteric is d ...
species that can act as an acid or as a base, depending on pH of the solution. At high pH, it dissociates significantly into the
carbonate A carbonate is a salt of carbonic acid, (), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate group ...
ion (): : :''K''a2 = 4.69 × 10−11 mol/L; p''K''a2 = 10.329 In organisms, carbonic acid production is catalysed by the
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
known as
carbonic anhydrase The carbonic anhydrases (or carbonate dehydratases) () form a family of enzymes that catalyst, catalyze the interconversion between carbon dioxide and water and the Dissociation (chemistry), dissociated ions of carbonic acid (i.e. bicarbonate a ...
. In addition to altering its acidity, the presence of carbon dioxide in water also affects its electrical properties. When carbon dioxide dissolves in desalinated water, the electrical conductivity increases significantly from below 1 μS/cm to nearly 30 μS/cm. When heated, the water begins to gradually lose the conductivity induced by the presence of \mathrm , especially noticeable as temperatures exceed 30 Â°C. The temperature dependence of the electrical conductivity of fully deionized water without saturation is comparably low in relation to these data.


Chemical reactions

is a potent
electrophile In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. Because electrophiles accept electrons, they are Lewis acids. Most electrophiles are positively Electric charge, charged, have an ...
having an electrophilic reactivity that is comparable to
benzaldehyde Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful. It is a colorless liquid with a characteristic almond-li ...
or strongly electrophilic α,β-unsaturated carbonyl compounds. However, unlike electrophiles of similar reactivity, the reactions of nucleophiles with are thermodynamically less favored and are often found to be highly reversible. The reversible reaction of carbon dioxide with
amine In chemistry, amines (, ) are organic compounds that contain carbon-nitrogen bonds. Amines are formed when one or more hydrogen atoms in ammonia are replaced by alkyl or aryl groups. The nitrogen atom in an amine possesses a lone pair of elec ...
s to make
carbamate In organic chemistry, a carbamate is a category of organic compounds with the general Chemical formula, formula and Chemical structure, structure , which are formally Derivative (chemistry), derived from carbamic acid (). The term includes orga ...
s is used in scrubbers and has been suggested as a possible starting point for carbon capture and storage by
amine gas treating Amine gas treating, also known as amine scrubbing, gas sweetening and acid gas removal, refers to a group of processes that use aqueous solutions of various Amine#Aliphatic amines, alkylamines (commonly referred to simply as amines) to remove hydr ...
. Only very strong nucleophiles, like the
carbanion In organic chemistry, a carbanion is an anion with a lone pair attached to a tervalent carbon atom. This gives the carbon atom a negative charge. Formally, a carbanion is the conjugate base of a carbon acid: : where B stands for the base (chemist ...
s provided by
Grignard reagent Grignard reagents or Grignard compounds are chemical compounds with the general formula , where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride and phenylmagnesium bromi ...
s and
organolithium compound In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom ...
s react with to give
carboxylate In organic chemistry, a carboxylate is the conjugate base of a carboxylic acid, (or ). It is an anion, an ion with negative charge. Carboxylate salts are salts that have the general formula , where M is a metal and ''n'' is 1, 2,... ...
s: : :where M = Li or Mg Br and R =
alkyl In organic chemistry, an alkyl group is an alkane missing one hydrogen. The term ''alkyl'' is intentionally unspecific to include many possible substitutions. An acyclic alkyl has the general formula of . A cycloalkyl group is derived from a cy ...
or
aryl In organic chemistry, an aryl is any functional group or substituent derived from an aromatic ring, usually an aromatic hydrocarbon, such as phenyl and naphthyl. "Aryl" is used for the sake of abbreviation or generalization, and "Ar" is used ...
. In metal carbon dioxide complexes, serves as a
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
, which can facilitate the conversion of to other chemicals. The reduction of to CO is ordinarily a difficult and slow reaction: : The
redox potential Redox potential (also known as oxidation / reduction potential, ''ORP'', ''pe'', ''E_'', or E_) is a measure of the tendency of a chemical species to acquire electrons from or lose electrons to an electrode and thereby be reduced or oxidised respe ...
for this reaction near pH 7 is about −0.53 V ''versus'' the
standard hydrogen electrode In electrochemistry, the standard hydrogen electrode (abbreviated SHE), is a redox electrode which forms the basis of the thermodynamic scale of oxidation-reduction potentials. Its absolute electrode potential is estimated to be at 25 Â° ...
. The nickel-containing enzyme carbon monoxide dehydrogenase catalyses this process. Photoautotrophs (i.e.
plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s and
cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
) use the energy contained in sunlight to photosynthesize simple
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose Glucose is a sugar with the Chemical formula#Molecular formula, molecul ...
s from absorbed from the air and water: :


Physical properties

Carbon dioxide is colorless. At low concentrations, the gas is odorless; however, at sufficiently high concentrations, it has a sharp, acidic odor. At
standard temperature and pressure Standard temperature and pressure (STP) or standard conditions for temperature and pressure are various standard sets of conditions for experimental measurements used to allow comparisons to be made between different sets of data. The most used ...
, the density of carbon dioxide is around 1.98 kg/m3, about 1.53 times that of
air An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
. Carbon dioxide has no liquid state at pressures below 0.51795(10)
MPa MPA or mPa may refer to: Academia Academic degrees * Master of Performing Arts * Master of Professional Accountancy * Master of Public Administration * Master of Public Affairs Schools * Mesa Preparatory Academy * Morgan Park Academy * M ...
(5.11177(99) atm). At a pressure of 1 atm (0.101325 MPa), the gas
deposits A deposit account is a bank account maintained by a financial institution in which a customer can deposit and withdraw money. Deposit accounts can be savings accounts, current accounts or any of several other types of accounts explained below. ...
directly to a solid at temperatures below 194.6855(30) K (−78.4645(30) °C) and the solid sublimes directly to a gas above this temperature. In its solid state, carbon dioxide is commonly called
dry ice Dry ice is the solid form of carbon dioxide. It is commonly used for temporary refrigeration as CO2 does not have a liquid state at normal atmospheric pressure and Sublimation (phase transition), sublimes directly from the solid state to the gas ...
.
Liquid carbon dioxide Liquid carbon dioxide is the liquid state of carbon dioxide (), which cannot occur under atmospheric pressure. It can only exist at a pressure above , under (temperature of critical point) and above (temperature of triple point). Low-temperatu ...
forms only at
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
s above 0.51795(10) MPa (5.11177(99) atm); the
triple point In thermodynamics, the triple point of a substance is the temperature and pressure at which the three Phase (matter), phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium.. It is that temperature and pressure at ...
of carbon dioxide is 216.592(3) K (−56.558(3) °C) at 0.51795(10) MPa (5.11177(99) atm) (see phase diagram). The Critical point (thermodynamics), critical point is 304.128(15) K (30.978(15) °C) at 7.3773(30) MPa (72.808(30) atm). Another form of solid carbon dioxide observed at high pressure is an amorphous glass-like solid. This form of glass, called ''amorphous carbonia, carbonia'', is produced by supercooling heated at extreme pressures (40–48 GPa, or about 400,000 atmospheres) in a diamond anvil. This discovery confirmed the theory that carbon dioxide could exist in a glass state similar to other members of its elemental family, like silicon dioxide (silica glass) and germanium dioxide. Unlike silica and germania glasses, however, carbonia glass is not stable at normal pressures and reverts to gas when pressure is released. At temperatures and pressures above the critical point, carbon dioxide behaves as a supercritical fluid known as supercritical carbon dioxide. Table of thermal and physical properties of saturated liquid carbon dioxide: Table of thermal and physical properties of carbon dioxide () at atmospheric pressure:


Biological role

Carbon dioxide is an end product of cellular respiration in organisms that obtain energy by breaking down sugars, fats and amino acids with oxygen as part of their metabolism. This includes all plants, algae and animals and aerobic respiration, aerobic fungi and bacteria. In vertebrates, the carbon dioxide travels in the blood from the body's tissues to the skin (e.g., amphibians) or the gills (e.g., fish), from where it dissolves in the water, or to the lungs from where it is exhaled. During active photosynthesis, compensation point, plants can absorb more carbon dioxide from the atmosphere than they release in respiration.


Photosynthesis and carbon fixation

Carbon fixation is a biochemical process by which atmospheric carbon dioxide is incorporated by plants, algae and cyanobacteria into fuel, energy-rich organic molecules such as glucose, thus creating their own food by photosynthesis. Photosynthesis uses carbon dioxide and water to produce sugars from which other
organic compound Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
s can be constructed, and
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
is produced as a by-product. RuBisCO, Ribulose-1,5-bisphosphate carboxylase oxygenase, commonly abbreviated to RuBisCO, is the
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
involved in the first major step of carbon fixation, the production of two molecules of 3-phosphoglycerate from and ribulose bisphosphate, as shown in the diagram at left. RuBisCO is thought to be the single most abundant protein on Earth. Phototrophs use the products of their photosynthesis as internal food sources and as raw material for the biosynthesis of more complex organic molecules, such as polysaccharides, nucleic acids, and proteins. These are used for their own growth, and also as the basis of the food chains and webs that feed other organisms, including animals such as ourselves. Some important phototrophs, the coccolithophores synthesise hard calcium carbonate scales. A globally significant species of coccolithophore is ''Emiliania huxleyi'' whose calcite scales have formed the basis of many sedimentary rocks such as limestone, where what was previously atmospheric carbon can remain fixed for geological timescales. Plants can grow as much as 50% faster in concentrations of 1,000 ppm when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients. Elevated levels cause increased growth reflected in the harvestable yield of crops, with wheat, rice and soybean all showing increases in yield of 12–14% under elevated in FACE experiments. Increased atmospheric concentrations result in fewer stomata developing on plants which leads to reduced water usage and increased water-use efficiency. Studies using Free-Air Concentration Enrichment, FACE have shown that enrichment leads to decreased concentrations of micronutrients in crop plants. This may have knock-on effects on other parts of ecosystems as herbivores will need to eat more food to gain the same amount of protein. The concentration of secondary metabolites such as phenylpropanoids and flavonoids can also be altered in plants exposed to high concentrations of . Plants also emit during respiration, and so the majority of plants and algae, which use C3 photosynthesis, are only net absorbers during the day. Though a growing forest will absorb many tons of each year, a mature forest will produce as much from respiration and decomposition of dead specimens (e.g., fallen branches) as is used in photosynthesis in growing plants. Contrary to the long-standing view that they are carbon neutral, mature forests can continue to accumulate carbon and remain valuable
carbon sink A carbon sink is a natural or artificial carbon sequestration process that "removes a  greenhouse gas, an aerosol or a precursor of a greenhouse gas from the atmosphere". These sinks form an important part of the natural carbon cycle. An overar ...
s, helping to maintain the carbon balance of Earth's atmosphere. Additionally, and crucially to life on earth, photosynthesis by phytoplankton consumes dissolved in the upper ocean and thereby promotes the absorption of from the atmosphere.


Toxicity

Carbon dioxide content in fresh air (averaged between sea-level and 10 kPa level, i.e., about altitude) varies between 0.036% (360 ppm) and 0.041% (412 ppm), depending on the location. In humans, exposure to at concentrations greater than 5% causes the development of hypercapnia and respiratory acidosis. Text was copied from this source, which is available under a creativecommons:by/4.0/, Creative Commons Attribution 4.0 International License Concentrations of 7% to 10% (70,000 to 100,000 ppm) may cause suffocation, even in the presence of sufficient oxygen, manifesting as dizziness, headache, visual and hearing dysfunction, and unconsciousness within a few minutes to an hour. Concentrations of more than 10% may cause convulsions, coma, and death. levels of more than 30% act rapidly leading to loss of consciousness in seconds. Because it is heavier than air, in locations where the gas seeps from the ground (due to sub-surface volcanic or geothermal activity) in relatively high concentrations, without the dispersing effects of wind, it can collect in sheltered/pocketed locations below average ground level, causing animals located therein to be suffocated. Carrion feeders attracted to the carcasses are then also killed. Children have been killed in the same way near the city of Goma by emissions from the nearby volcano Mount Nyiragongo. The Swahili language, Swahili term for this phenomenon is . Adaptation to increased concentrations of occurs in humans, including Respiratory adaptation, modified breathing and kidney bicarbonate production, in order to balance the effects of blood acidification (acidosis). Several studies suggested that 2.0 percent inspired concentrations could be used for closed air spaces (e.g. a submarine) since the adaptation is physiological and reversible, as deterioration in performance or in normal physical activity does not happen at this level of exposure for five days. Yet, other studies show a decrease in cognitive function even at much lower levels. Also, with ongoing respiratory acidosis, adaptation or compensatory mechanisms will be unable to reverse the condition.


Below 1%

There are few studies of the health effects of long-term continuous exposure on humans and animals at levels below 1%. Occupational exposure limits have been set in the United States at 0.5% (5000 ppm) for an eight-hour period. At this concentration, International Space Station crew experienced headaches, lethargy, mental slowness, emotional irritation, and sleep disruption. Studies in animals at 0.5% have demonstrated kidney calcification and bone loss after eight weeks of exposure. A study of humans exposed in 2.5 hour sessions demonstrated significant negative effects on cognitive abilities at concentrations as low as 0.1% (1000ppm) likely due to induced increases in cerebral blood flow. Another study observed a decline in basic activity level and information usage at 1000 ppm, when compared to 500 ppm. However a review of the literature found that a reliable subset of studies on the phenomenon of carbon dioxide induced cognitive impairment to only show a small effect on high-level decision making (for concentrations below 5000 ppm). Most of the studies were confounded by inadequate study designs, environmental comfort, uncertainties in exposure doses and differing cognitive assessments used. Similarly a study on the effects of the concentration of in motorcycle helmets has been criticized for having dubious methodology in not noting the self-reports of motorcycle riders and taking measurements using mannequins. Further when normal motorcycle conditions were achieved (such as highway or city speeds) or the visor was raised the concentration of declined to safe levels (0.2%).


Ventilation

Poor ventilation is one of the main causes of excessive concentrations in closed spaces, leading to poor indoor air quality. Carbon dioxide differential above outdoor concentrations at steady state conditions (when the occupancy and ventilation system operation are sufficiently long that concentration has stabilized) are sometimes used to estimate ventilation rates per person. Higher concentrations are associated with occupant health, comfort and performance degradation. ASHRAE Standard 62.1–2007 ventilation rates may result in indoor concentrations up to 2,100 ppm above ambient outdoor conditions. Thus if the outdoor concentration is 400 ppm, indoor concentrations may reach 2,500 ppm with ventilation rates that meet this industry consensus standard. Concentrations in poorly ventilated spaces can be found even higher than this (range of 3,000 or 4,000 ppm). Miners, who are particularly vulnerable to gas exposure due to insufficient ventilation, referred to mixtures of carbon dioxide and nitrogen as "blackdamp", "choke damp" or "stythe". Before more effective technologies were developed, miners would frequently monitor for dangerous levels of blackdamp and other gases in mine shafts by bringing a caged Domestic Canary, canary with them as they worked. The canary is more sensitive to asphyxiant gases than humans, and as it became unconscious would stop singing and fall off its perch. The Davy lamp could also detect high levels of blackdamp (which sinks, and collects near the floor) by burning less brightly, while methane, another suffocating gas and explosion risk, would make the lamp burn more brightly. In February 2020, three people died from suffocation at a party in Moscow when dry ice (frozen ) was added to a swimming pool to cool it down. A similar accident occurred in 2018 when a woman died from fumes emanating from the large amount of dry ice she was transporting in her car.


Indoor air

Humans spend more and more time in a confined atmosphere (around 80-90% of the time in a building or vehicle). According to the French Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Agency for Food, Environmental and Occupational Health & Safety (ANSES) and various actors in France, the rate in the indoor air of buildings (linked to human or animal occupancy and the presence of combustion installations), weighted by air renewal, is "usually between about 350 and 2,500 ppm". In homes, schools, nurseries and offices, there are no systematic relationships between the levels of and other pollutants, and indoor is statistically not a good predictor of pollutants linked to outdoor road (or air, etc.) traffic. is the parameter that changes the fastest (with hygrometry and oxygen levels when humans or animals are gathered in a closed or poorly ventilated room). In poor countries, many open hearths are sources of and CO emitted directly into the living environment.


Outdoor areas with elevated concentrations

Local concentrations of carbon dioxide can reach high values near strong sources, especially those that are isolated by surrounding terrain. At the Bossoleto hot spring near Rapolano Terme in Tuscany, Italy, situated in a bowl-shaped depression about in diameter, concentrations of rise to above 75% overnight, sufficient to kill insects and small animals. After sunrise the gas is dispersed by convection. High concentrations of produced by disturbance of deep lake water saturated with are thought to have caused 37 fatalities at Lake Monoun, Cameroon in 1984 and 1700 casualties at Lake Nyos, Cameroon in 1986.


Human physiology


Content

The body produces approximately of carbon dioxide per day per person, containing of carbon. In humans, this carbon dioxide is carried through the venous system and is breathed out through the lungs, resulting in lower concentrations in the arteries. The carbon dioxide content of the blood is often given as the partial pressure, which is the pressure which carbon dioxide would have had if it alone occupied the volume. In humans, the blood carbon dioxide contents are shown in the adjacent table.


Transport in the blood

is carried in blood in three different ways. Exact percentages vary between arterial and venous blood. * Majority (about 70% to 80%) is converted to
bicarbonate In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula . Bicarbonate serves a crucial bioche ...
ions by the enzyme
carbonic anhydrase The carbonic anhydrases (or carbonate dehydratases) () form a family of enzymes that catalyst, catalyze the interconversion between carbon dioxide and water and the Dissociation (chemistry), dissociated ions of carbonic acid (i.e. bicarbonate a ...
in the red blood cells, by the reaction: : * 5–10% is dissolved in blood plasma * 5–10% is bound to hemoglobin as carbamino compounds Hemoglobin, the main oxygen-carrying molecule in red blood cells, carries both oxygen and carbon dioxide. However, the bound to hemoglobin does not bind to the same site as oxygen. Instead, it combines with the N-terminal groups on the four globin chains. However, because of allosteric regulation, allosteric effects on the hemoglobin molecule, the binding of decreases the amount of oxygen that is bound for a given partial pressure of oxygen. This is known as the Haldane Effect, and is important in the transport of carbon dioxide from the tissues to the lungs. Conversely, a rise in the partial pressure of or a lower pH will cause offloading of oxygen from hemoglobin, which is known as the Bohr effect.


Regulation of respiration

Carbon dioxide is one of the mediators of local autoregulation of blood supply. If its concentration is high, the capillaries expand to allow a greater blood flow to that tissue. Bicarbonate ions are crucial for regulating blood pH. A person's breathing rate influences the level of in their blood. Breathing that is too slow or shallow causes respiratory acidosis, while breathing that is too rapid leads to hyperventilation, which can cause alkalosis, respiratory alkalosis. Although the body requires oxygen for metabolism, low oxygen levels normally do not stimulate breathing. Rather, breathing is stimulated by higher carbon dioxide levels. As a result, breathing low-pressure air or a gas mixture with no oxygen at all (such as pure nitrogen) can lead to loss of consciousness without ever experiencing air hunger. This is especially perilous for high-altitude fighter pilots. It is also why flight attendants instruct passengers, in case of loss of cabin pressure, to apply the oxygen mask to themselves first before helping others; otherwise, one risks losing consciousness. The respiratory centers try to maintain an arterial pressure of 40 mmHg. With intentional hyperventilation, the content of arterial blood may be lowered to 10–20 mmHg (the oxygen content of the blood is little affected), and the respiratory drive is diminished. This is why one can hold one's breath longer after hyperventilating than without hyperventilating. This carries the risk that unconsciousness may result before the need to breathe becomes overwhelming, which is why hyperventilation is particularly dangerous before free diving.


Concentrations and role in the environment


Atmosphere


Oceans


Ocean acidification

Carbon dioxide dissolves in the ocean to form carbonic acid (), bicarbonate (), and carbonate (). There is about fifty times as much carbon dioxide dissolved in the oceans as exists in the atmosphere. The oceans act as an enormous
carbon sink A carbon sink is a natural or artificial carbon sequestration process that "removes a  greenhouse gas, an aerosol or a precursor of a greenhouse gas from the atmosphere". These sinks form an important part of the natural carbon cycle. An overar ...
, and have taken up about a third of emitted by human activity.


Hydrothermal vents

Carbon dioxide is also introduced into the oceans through hydrothermal vents. The ''Champagne'' hydrothermal vent, found at the Northwest Eifuku volcano in the Mariana Trench, produces almost pure liquid carbon dioxide, one of only two known sites in the world as of 2004, the other being in the Okinawa Trough. The finding of a submarine lake of liquid carbon dioxide in the Okinawa Trough was reported in 2006.


Sources

The burning of
fossil fuel A fossil fuel is a flammable carbon compound- or hydrocarbon-containing material formed naturally in the Earth's crust from the buried remains of prehistoric organisms (animals, plants or microplanktons), a process that occurs within geolog ...
s for energy produces 36.8 billion tonnes of per year as of 2023. Nearly all of this goes into the atmosphere, where approximately half is subsequently absorbed into natural
carbon sink A carbon sink is a natural or artificial carbon sequestration process that "removes a  greenhouse gas, an aerosol or a precursor of a greenhouse gas from the atmosphere". These sinks form an important part of the natural carbon cycle. An overar ...
s. Less than 1% of produced annually is put to commercial use.


Biological processes

Carbon dioxide is a by-product of the Fermentation (biochemistry), fermentation of sugar in the brewing of beer, whisky and other alcoholic beverages and in the production of bioethanol. Yeast metabolizes sugar to produce and ethanol, also known as alcohol, as follows: : All cellular respiration, aerobic organisms produce when they oxidize
carbohydrate A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
s, fatty acids, and proteins. The large number of reactions involved are exceedingly complex and not described easily. Refer to cellular respiration, anaerobic respiration and
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
. The equation for the respiration of glucose and other monosaccharides is: : Anaerobic organisms decompose organic material producing methane and carbon dioxide together with traces of other compounds. Regardless of the type of organic material, the production of gases follows well defined chemical kinetics, kinetic pattern. Carbon dioxide comprises about 40–45% of the gas that emanates from decomposition in landfills (termed "landfill gas"). Most of the remaining 50–55% is methane.


Combustion

The combustion of all carbon-based fuels, such as methane (
natural gas Natural gas (also fossil gas, methane gas, and gas) is a naturally occurring compound of gaseous hydrocarbons, primarily methane (95%), small amounts of higher alkanes, and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium ...
), petroleum distillates (gasoline, Diesel fuel, diesel, kerosene, propane), coal, wood and generic organic matter produces carbon dioxide and, except in the case of pure carbon, water. As an example, the chemical reaction between methane and
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
: : Iron is reduced from its oxides with coke (fuel), coke in a blast furnace, producing pig iron and carbon dioxide: :


By-product from hydrogen production

Carbon dioxide is a byproduct of the industrial production of hydrogen by steam reforming and the water gas shift reaction in ammonia production. These processes begin with the reaction of water and natural gas (mainly methane).


Thermal decomposition of limestone

It is produced by thermal decomposition of limestone, by heating (calcining) at about , in the manufacture of Calcium oxide, quicklime (calcium oxide, CaO), a compound that has many industrial uses: : Acids liberate from most metal carbonates. Consequently, it may be obtained directly from natural carbon dioxide spring (hydrosphere), springs, where it is produced by the action of acidified water on limestone or Dolomite (mineral), dolomite. The reaction between hydrochloric acid and calcium carbonate (limestone or chalk) is shown below: : The carbonic acid () then decomposes to water and : : Such reactions are accompanied by foaming or bubbling, or both, as the gas is released. They have widespread uses in industry because they can be used to neutralize waste acid streams.


Commercial uses

Around 230 Mt of are used each year, mostly in the fertiliser industry for urea production (130 million tonnes) and in the oil and gas industry for
enhanced oil recovery Enhanced oil recovery (abbreviated EOR), also called tertiary recovery, is the extraction of crude oil from an oil field that cannot be extracted after primary and secondary recovery methods have been completely exhausted. Whereas primary and se ...
(70 to 80 million tonnes). Other commercial applications include food and beverage production, metal fabrication, cooling, fire suppression and stimulating plant growth in greenhouses. Technology exists to Carbon capture and storage, capture from industrial flue gas or Direct air capture, from the air. Research is ongoing on ways to use Carbon capture and storage#CO2 utilization in products, captured in products and some of these processes have been deployed commercially. Text was copied from this source, which is available under a creativecommons:by/4.0/, Creative Commons Attribution 4.0 International License However, the potential to use products is very small compared to the total volume of that could foreseeably be captured. Text was copied from this source, which is available under a creativecommons:by/4.0/, Creative Commons Attribution 4.0 International License The vast majority of captured is considered a waste product and sequestered in underground geologic formations.Text was copied from this source, which is available under a creativecommons:by/4.0/, Creative Commons Attribution 4.0 International License


Precursor to chemicals

In the chemical industry, carbon dioxide is mainly consumed as an ingredient in the production of urea, with a smaller fraction being used to produce methanol and a range of other products. Some carboxylic acid derivatives such as sodium salicylate are prepared using by the Kolbe–Schmitt reaction. Captured could be to produce methanol or electrofuels. To be carbon-neutral, the would need to come from bioenergy production or direct air capture.IEA (2020),
CCUS in Clean Energy Transitions
', IEA, Paris Text was copied from this source, which is available under a creativecommons:by/4.0/, Creative Commons Attribution 4.0 International License


Fossil fuel recovery

Carbon dioxide is used in
enhanced oil recovery Enhanced oil recovery (abbreviated EOR), also called tertiary recovery, is the extraction of crude oil from an oil field that cannot be extracted after primary and secondary recovery methods have been completely exhausted. Whereas primary and se ...
where it is injected into or adjacent to producing oil wells, usually under Supercritical fluid, supercritical conditions, when it becomes miscibility, miscible with the oil. This approach can increase original oil recovery by reducing residual oil saturation by 7–23% additional to Extraction of petroleum#Primary recovery, primary extraction. It acts as both a pressurizing agent and, when dissolved into the underground crude oil, significantly reduces its viscosity, and changing surface chemistry enabling the oil to flow more rapidly through the reservoir to the removal well. Most injected in -EOR projects comes from naturally occurring underground deposits. Text was copied from this source, which is available under a creativecommons:by/4.0/, Creative Commons Attribution 4.0 International License Some used in EOR is captured from industrial facilities such as Natural-gas processing, natural gas processing plants, using Carbon capture and storage, carbon capture technology and transported to the oilfield in pipelines.


Agriculture

Plants require carbon dioxide to conduct photosynthesis. The atmospheres of greenhouses may (if of large size, must) be enriched with additional to sustain and increase the rate of plant growth. At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000 ppm (1%) or higher for several hours will eliminate pests such as whiteflies and spider mites in a greenhouse. Some plants respond more favorably to rising carbon dioxide concentrations than others, which can lead to vegetation regime shifts like woody plant encroachment.


Foods

Carbon dioxide is a food additive used as a propellant and acidity regulator in the food industry. It is approved for usage in the EU (listed as E number E290), US, Australia and New Zealand (listed by its INS number 290). A candy called Pop Rocks is pressurized with carbon dioxide gas at about . When placed in the mouth, it dissolves (just like other hard candy) and releases the gas bubbles with an audible pop. Leavening agents cause dough to rise by producing carbon dioxide. Baker's yeast produces carbon dioxide by fermentation of sugars within the dough, while chemical leaveners such as baking powder and baking soda release carbon dioxide when heated or if exposed to acids.


Beverages

Carbon dioxide is used to produce carbonation, carbonated soft drinks and soda water. Traditionally, the carbonation of beer and sparkling wine came about through natural fermentation, but many manufacturers carbonate these drinks with carbon dioxide recovered from the fermentation process. In the case of bottled and kegged beer, the most common method used is carbonation with recycled carbon dioxide. With the exception of British cask ale#Real ale, real ale, draught beer is usually transferred from kegs in a cold room or cellar to dispensing taps on the bar using pressurized carbon dioxide, sometimes mixed with nitrogen. The taste of soda water (and related taste sensations in other carbonated beverages) is an effect of the dissolved carbon dioxide rather than the bursting bubbles of the gas. Carbonic anhydrase 4 converts carbon dioxide to carbonic acid leading to a sour taste, and also the dissolved carbon dioxide induces a somatosensory response.


Winemaking

Carbon dioxide in the form of
dry ice Dry ice is the solid form of carbon dioxide. It is commonly used for temporary refrigeration as CO2 does not have a liquid state at normal atmospheric pressure and Sublimation (phase transition), sublimes directly from the solid state to the gas ...
is often used during the cold soak phase in winemaking to cool clusters of grapes quickly after picking to help prevent spontaneous Fermentation (wine), fermentation by wild yeast (wine), yeast. The main advantage of using dry ice over water ice is that it cools the grapes without adding any additional water that might decrease the sugar concentration in the grape must, and thus the ethanol, alcohol concentration in the finished wine. Carbon dioxide is also used to create a hypoxic environment for carbonic maceration, the process used to produce Beaujolais wine. Carbon dioxide is sometimes used to top up wine bottles or other storage (wine), storage vessels such as barrels to prevent oxidation, though it has the problem that it can dissolve into the wine, making a previously still wine slightly fizzy. For this reason, other gases such as nitrogen or argon are preferred for this process by professional wine makers.


Stunning animals

Carbon dioxide is often used to "stun" animals before slaughter. "Stunning" may be a misnomer, as the animals are not knocked out immediately and may suffer distress.


Inert gas

Carbon dioxide is one of the most commonly used compressed gases for pneumatic (pressurized gas) systems in portable pressure tools. Carbon dioxide is also used as an atmosphere for welding, although in the welding arc, it reacts to oxidation, oxidize most metals. Use in the automotive industry is common despite significant evidence that welds made in carbon dioxide are more brittle than those made in more inert atmospheres. When used for MIG welding, use is sometimes referred to as MAG welding, for Metal Active Gas, as can react at these high temperatures. It tends to produce a hotter puddle than truly inert atmospheres, improving the flow characteristics. Although, this may be due to atmospheric reactions occurring at the puddle site. This is usually the opposite of the desired effect when welding, as it tends to embrittle the site, but may not be a problem for general mild steel welding, where ultimate ductility is not a major concern. Carbon dioxide is used in many consumer products that require pressurized gas because it is inexpensive and nonflammable, and because it undergoes a phase transition from gas to liquid at room temperature at an attainable pressure of approximately , allowing far more carbon dioxide to fit in a given container than otherwise would. Life jackets often contain canisters of pressured carbon dioxide for quick inflation. Aluminium capsules of are also sold as supplies of compressed gas for air guns, paintball markers/guns, inflating bicycle tires, and for making carbonated water. High concentrations of carbon dioxide can also be used to kill pests. Liquid carbon dioxide is used in supercritical drying of some food products and technological materials, in the preparation of specimens for scanning electron microscopy and in the decaffeination of coffee beans.


Fire extinguisher

Carbon dioxide can be used to extinguish flames by flooding the environment around the flame with the gas. It does not itself react to extinguish the flame, but starves the flame of oxygen by displacing it. Some Fire extinguisher#Halons, Halon-replacement clean agents and carbon dioxide, fire extinguishers, especially those designed for electrical fires, contain liquid carbon dioxide under pressure. Carbon dioxide extinguishers work well on small flammable liquid and electrical fires, but not on ordinary combustible fires, because they do not cool the burning substances significantly, and when the carbon dioxide disperses, they can catch fire upon exposure to atmospheric oxygen. They are mainly used in server rooms. Carbon dioxide has also been widely used as an extinguishing agent in fixed fire-protection systems for local application of specific hazards and total flooding of a protected space. International Maritime Organization standards recognize carbon dioxide systems for fire protection of ship holds and engine rooms. Carbon dioxide-based fire-protection systems have been linked to several deaths, because it can cause suffocation in sufficiently high concentrations. A review of systems identified 51 incidents between 1975 and the date of the report (2000), causing 72 deaths and 145 injuries.


Supercritical as solvent

Liquid carbon dioxide is a good solvent for many lipophilic
organic compound Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
s and is used to decaffeinate coffee. Carbon dioxide has attracted attention in the pharmaceutical and other chemical processing industries as a less toxic alternative to more traditional solvents such as organochlorides. It is also used by some dry cleaners for this reason. It is used in the preparation of some Aerogel#Production, aerogels because of the properties of supercritical carbon dioxide.


Refrigerant

Liquid and solid carbon dioxide are important refrigerants, especially in the food industry, where they are employed during the transportation and storage of ice cream and other frozen foods. Solid carbon dioxide is called "dry ice" and is used for small shipments where refrigeration equipment is not practical. Solid carbon dioxide is always below at regular atmospheric pressure, regardless of the air temperature. Liquid carbon dioxide (industry nomenclature R744 or R-744) was used as a refrigerant prior to the use of dichlorodifluoromethane (R12, a chlorofluorocarbon (CFC) compound). might enjoy a renaissance because one of the main substitutes to CFCs, 1,1,1,2-tetrafluoroethane (R134a, a hydrofluorocarbon (HFC) compound) contributes to
climate change Present-day climate change includes both global warming—the ongoing increase in Global surface temperature, global average temperature—and its wider effects on Earth's climate system. Climate variability and change, Climate change in ...
more than does. physical properties are highly favorable for cooling, refrigeration, and heating purposes, having a high volumetric cooling capacity. Due to the need to operate at pressures of up to , systems require highly mechanically resistant reservoirs and components that have already been developed for mass production in many sectors. In automobile air conditioning, in more than 90% of all driving conditions for latitudes higher than 50°, (R744) operates more efficiently than systems using HFCs (e.g., R134a). Its environmental advantages (Global warming potential, GWP of 1, non-ozone depleting, non-toxic, non-flammable) could make it the future working fluid to replace current HFCs in cars, supermarkets, and heat pump water heaters, among others. Coca-Cola has fielded -based beverage coolers and the United States Army, U.S. Army is interested in refrigeration and heating technology.


Minor uses

Carbon dioxide is the active laser medium, lasing medium in a carbon-dioxide laser, which is one of the earliest type of lasers. Carbon dioxide can be used as a means of controlling the pH of swimming pools, by continuously adding gas to the water, thus keeping the pH from rising. Among the advantages of this is the avoidance of handling (more hazardous) acids. Similarly, it is also used in the maintaining Reef aquarium, reef aquaria, where it is commonly used in calcium reactors to temporarily lower the pH of water being passed over calcium carbonate in order to allow the calcium carbonate to dissolve into the water more freely, where it is used by some corals to build their skeleton. Used as the primary coolant in the British advanced gas-cooled reactor for nuclear power generation. Carbon dioxide induction is commonly used for the euthanasia of laboratory research animals. Methods to administer include placing animals directly into a closed, prefilled chamber containing , or exposure to a gradually increasing concentration of . The American Veterinary Medical Association's 2020 guidelines for carbon dioxide induction state that a displacement rate of 30–70% of the chamber or cage volume per minute is optimal for the humane euthanasia of small rodents. Percentages of vary for different species, based on identified optimal percentages to minimize distress. Carbon dioxide is also used in several related carbon dioxide cleaning, cleaning and surface-preparation techniques.


History of discovery

Carbon dioxide was the first gas to be described as a discrete substance. In about 1640, the Flemish people, Flemish chemist Jan Baptist van Helmont observed that when he burned charcoal in a closed vessel, the mass of the resulting ash (analytical chemistry), ash was much less than that of the original charcoal. His interpretation was that the rest of the charcoal had been transmuted into an invisible substance he termed a "gas" (from Greek "chaos") or "wild spirit" (''spiritus sylvestris''). The properties of carbon dioxide were further studied in the 1750s by the Scotland, Scottish physician Joseph Black. He found that limestone (calcium carbonate) could be heated or treated with acids to yield a gas he called "fixed air". He observed that the fixed air was denser than air and supported neither flame nor animal life. Black also found that when bubbled through limewater (a saturated aqueous solution of calcium hydroxide), it would Precipitation (chemistry), precipitate calcium carbonate. He used this phenomenon to illustrate that carbon dioxide is produced by animal respiration and microbial fermentation. In 1772, English chemist Joseph Priestley published a paper entitled ''Impregnating Water with Fixed Air'' in which he described a process of dripping sulfuric acid (or ''oil of vitriol'' as Priestley knew it) on chalk in order to produce carbon dioxide, and forcing the gas to dissolve by agitating a bowl of water in contact with the gas. Carbon dioxide was first liquefied (at elevated pressures) in 1823 by Humphry Davy and Michael Faraday. The earliest description of solid carbon dioxide (
dry ice Dry ice is the solid form of carbon dioxide. It is commonly used for temporary refrigeration as CO2 does not have a liquid state at normal atmospheric pressure and Sublimation (phase transition), sublimes directly from the solid state to the gas ...
) was given by the French inventor Adrien-Jean-Pierre Thilorier, who in 1835 opened a pressurized container of liquid carbon dioxide, only to find that the cooling produced by the rapid evaporation of the liquid yielded a "snow" of solid . Carbon dioxide in combination with nitrogen was known from earlier times as Blackdamp, stythe or choke damp. Along with the other types of damp (mining), damp it was encountered in mining operations and well sinking. Slow oxidation of coal and biological processes replaced the oxygen to create a Suffocation, suffocating mixture of nitrogen and carbon dioxide.


See also

* * * (from the atmosphere) * (early work on and climate change) * * List of countries by carbon dioxide emissions * List of least carbon efficient power stations * * NASA's *


Notes


References


External links


Current global map of carbon dioxide concentration


* [https://gml.noaa.gov/ccgg/trends/ Trends in Atmospheric Carbon Dioxide] (NOAA)
The rediscovery of : History, What is Shecco?
- as refrigerant {{DEFAULTSORT:Carbon Dioxide Carbon dioxide, Acid anhydrides Acidic oxides Coolants Fire suppression agents Greenhouse gases Household chemicals Inorganic solvents Laser gain media Nuclear reactor coolants Oxocarbons Propellants Refrigerants Gaseous signaling molecules E-number additives Triatomic molecules