Cantitruncated 5-orthoplex
   HOME

TheInfoList



OR:

In five-dimensional
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a cantellated 5-orthoplex is a convex
uniform 5-polytope In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope Facet (geometry), facets. The complete set of convex uniform 5-polytopes ...
, being a
cantellation In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tiling ...
of the regular
5-orthoplex In five-dimensional geometry, a 5-orthoplex, or 5- cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regula ...
. There are 6 cantellation for the 5-orthoplex, including truncations. Some of them are more easily constructed from the dual
5-cube In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or , constructed as 3 tesseracts ...
.


Cantellated 5-orthoplex


Alternate names

* Cantellated 5-orthoplex * Bicantellated 5-demicube * Small rhombated triacontiditeron (Acronym: sart) (Jonathan Bowers)


Coordinates

The vertices of the can be made in 5-space, as permutations and sign combinations of: : (0,0,1,1,2)


Images

The cantellated 5-orthoplex is constructed by a
cantellation In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tiling ...
operation applied to the 5-orthoplex.


Cantitruncated 5-orthoplex


Alternate names

* Cantitruncated pentacross * Cantitruncated triacontiditeron (Acronym: gart) (Jonathan Bowers)Klitizing, (x3x3x3o4o - gart)


Coordinates

Cartesian coordinates In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
for the vertices of a cantitruncated 5-orthoplex, centered at the origin, are all sign and coordinate
permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
s of : (±3,±2,±1,0,0)


Images


Related polytopes

These polytopes are from a set of 31 uniform 5-polytopes generated from the regular
5-cube In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or , constructed as 3 tesseracts ...
or
5-orthoplex In five-dimensional geometry, a 5-orthoplex, or 5- cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regula ...
.


Notes


References

*
H.S.M. Coxeter Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century. Coxeter was born in England and educated ...
: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. * x3o3x3o4o - sart, x3x3x3o4o - gart


External links

*
Polytopes of Various Dimensions
Jonathan Bowers

{{Polytopes 5-polytopes