Cable Accessories
   HOME

TheInfoList



OR:

A high-voltage cable (HV cable), sometimes called a high-tension cable (HT cable), is a cable used for
electric power transmission Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a ''transmission network''. This is ...
at
high voltage High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, ''high voltage'' refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant sp ...
. A cable includes a conductor and
insulation Insulation may refer to: Thermal * Thermal insulation, use of materials to reduce rates of heat transfer ** List of insulation materials ** Building insulation, thermal insulation added to buildings for comfort and energy efficiency *** Insulated ...
. Cables are considered to be fully insulated. This means that they have a fully rated insulation system that will consist of insulation, semi-con layers, and a metallic shield. This is in contrast to an
overhead line An overhead line or overhead wire is an electrical cable that is used to transmit electrical energy to electric locomotives, Electric multiple unit, electric multiple units, trolleybuses or trams. The generic term used by the International Union ...
, which may include insulation but not fully rated for operating voltage (EG: tree wire). High-voltage cables of differing types have a variety of applications in instruments, ignition systems, and
alternating current Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in w ...
(AC) and
direct current Direct current (DC) is one-directional electric current, flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor (material), conductor such as a wire, but can also flow throug ...
(DC) power transmission. In all applications, the insulation of the cable must not deteriorate due to the high-voltage stress, ozone produced by electric discharges in air, or tracking. The cable system must prevent contact of the high-voltage conductor with other objects or persons, and must contain and control leakage current. Cable joints and terminals must be designed to control the high-voltage stress to prevent the breakdown of the insulation. The cut lengths of high-voltage cables may vary from several feet to thousands of feet, with relatively short cables used in apparatus and longer cables run within buildings or as buried cables in an industrial plant or for power distribution. The longest cut lengths of cable will often be
submarine cables Submarine cable is any electrical cable that is laid on the seabed, although the term is often extended to encompass cables laid on the bottom of large freshwater bodies of water. Examples include: *Submarine communications cable *Submarine power ...
under the ocean for power transmission.


Cable insulation technologies

Like other
power cable A power cable is an electrical cable used specifically for transmission of electric energy, electrical power. It is an assembly of one or more electrical conductors, usually held together in a single bundle with an insulator (electricity), insu ...
s, high-voltage cables have the structural elements of one or more conductors, an insulation system, and a protective jacket. High-voltage cables differ from lower-voltage cables in that they have additional internal layers in the insulation system to control the electric field around the conductor. These additional layers are required at 2,000 V and above between conductors. Without these semi-conducting layers, the cable will fail due to electrical stress within minutes. This technique was patented by Martin Hochstadter in 1916; the shield is sometimes called a Hochstadter shield and shielded cable used to be called H-Type Cable. Depending on the grounding scheme, the shields of a cable can be connected to the ground at one end or both ends of the cable. Splices in the middle of the cable can be also grounded depending on the length of the circuit and if a semiconducting jacket is employed on direct buried circuits. Since 1960 solid dielectric extruded cables have taken dominance in the distribution market. These medium voltage cables are generally insulated with EPR or XLPE polymeric insulation. EPR insulation is common on cables from 4 to 34 kV. EPR is not commonly used over 35 kV due to losses, however, it can be found in 69 kV cables. XLPE is used at all voltage levels from the 600V class and up. Sometimes EAM insulation is marketed, however, market penetration remains fairly low. Solid, extruded insulation cables such as EPR and XLPE account for the majority of distribution and transmission cables produced today. However, the relative unreliability of early XLPE resulted in a slow adoption at transmission voltages. Cables of 330, 400, and 500 kV are commonly constructed using XLPE today, but this has occurred only in recent decades. An increasingly uncommon insulation type is PILC or paper insulation lead-covered cable. Some utilities still install this for distribution circuits as new construction or replacement.
Sebastian Ziani de Ferranti Sebastian Pietro Innocenzo Adhemar Ziani de Ferranti (9 April 1864 – 13 January 1930) was a British electrical engineer and inventor who pioneered high-voltage AC power in the UK, patented the Ferranti dynamo and designed Deptford power stat ...
was the first to demonstrate in 1887 that carefully dried and prepared
kraft paper Kraft paper or kraft is paper or paperboard (cardboard) produced from chemical pulp produced in the kraft process. Sack kraft paper (or just sack paper) is a porous kraft paper with high elasticity and high tear resistance, designed for packa ...
could form satisfactory cable insulation at 11,000 V. Previously paper-insulated cable had only been applied for low-voltage telegraph and telephone circuits. An extruded lead sheath over the paper cable was required to ensure that the paper remained moisture-free. Mass-impregnated paper-insulated medium voltage cables were commercially practical by 1895. During
World War II World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
several varieties of
synthetic rubber A synthetic rubber is an artificial elastomer. They are polymers synthesized from petroleum byproducts. About of rubber is produced annually in the United States, and of that amount two thirds are synthetic. Synthetic rubber, just like natural ru ...
and
polyethylene Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bott ...
insulation were applied to cables. Modern high-voltage cables use polymers, especially polyethylene, including cross-linked polyethylene (XLPE) for insulation. The demise of PILC could be considered to be in the 1980s and 1990s as urban utilities started to install more EPR and XLPE insulated cables. The factors for the decreased use of PILC are the high level of craftsmanship needed to splice lead, longer splicing times, reduced availability of the product domestically, and pressure to stop using lead for environmental and safety reasons. It should also be noted that rubber insulated lead-covered cable enjoyed a short period of popularity prior to 1960 in the low and medium voltage markets but was not widely used by most utilities. Existing PILC feeders are often considered to be near the end of life by most utilities and subject to replacement programs.
Vulcanized rubber Vulcanization (British English: vulcanisation) is a range of processes for hardening rubbers. The term originally referred exclusively to the treatment of natural rubber with sulfur, which remains the most common practice. It has also grown to ...
was patented by
Charles Goodyear Charles Goodyear (December 29, 1800 – July 1, 1860) was an American self-taught chemist and manufacturing engineer who developed vulcanized rubber, for which he received patent number 3633 from the United States Patent Office on June 15, 1844 ...
in 1844, but it was not applied to cable insulation until the 1880s when it was used for lighting circuits. Rubber-insulated cable was used for 11,000 V circuits in 1897 installed for the Niagara Falls Power Generation project. Oil-filled, gas-filled, and pipe-type cables have been largely considered obsolete since the 1960s. Such cables are designed to have significant oil flow through the cable. Standard PILC cables are impregnated with oil but the oil is not designed to flow or cool the cable. Oil-filled cables are typically lead-insulated and can be purchased on reels. Pipe-type cables differ from oil-filled cables in that they are installed in a rigid pipe usually made of steel. With pipe-type cables, the pipes are constructed first, and then at a later date, the cable is pulled through. The cable may feature skid wires to prevent damage during the pulling process. The cross-sectional volume of oil in a pipe-type cable is significantly higher than in an oil-filled cable. These pipe-type cables are oil-filled at nominal low, medium, and high pressures. Higher voltages require higher oil pressures to prevent the formation of voids that would allow
partial discharge In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) (which does not completely bridge the space between the two conductors) of a small portion of a solid or fluid electrical insulation (EI) system under hi ...
s within the cable insulation. Pipe-type cables will typically have a cathodic protection system driven off voltage where an oil-filled cable circuit would not. Pipe-type cable systems are often protected from forming ' through an asphaltic coating. There are still many of these pipe-type circuits in operation today. However, they have fallen out of favor due to the high front-end cost and massive O+M budget needed to maintain the fleet of pumping plants.


Cable insulation components

High voltage High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, ''high voltage'' refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant sp ...
is defined as any voltage over 1000 volts. Those of 2 to 33 kV are usually called ''medium voltage'' cables, those over 50 kV ''high voltage'' cables. Modern HV cables have a simple design consisting of a few parts: the conductor, the conductor shield, the insulation, the insulation shield, the metallic shield, and the jacket. Other layers can include water blocking tapes, ripcords, and armor wires.
Copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
or aluminum wires transports the current, see (1) in figure 1. (''For a detailed discussion on copper cables, see main article:
Copper conductor Copper has been used in electrical wiring since the invention of the electromagnet and the telegraph in the 1820s. The invention of the telephone in 1876 created further demand for copper wire as an electrical conductor. Copper is the electri ...
.'') The insulation, insulation shield, and conductor shield are generally polymer-based with a few rare exceptions. Single conductor designs under 2000 KCM are generally concentric. The individual strands are often deformed during the stranding process to provide a smoother overall circumference. These are known as compact and compressed conductors. Compact offers a 10% reduction in conductor outer diameter while the compressed version only offers a 3% decrease. The selection of a compressed or compact conductor will often require a different connector during splicing. 2000 KCM and larger transmission cables often include a sectored style design to reduce skin effect losses. Utility power cables are often designed to run at up to 75°C, 90°C, and 105°C conductor temperatures. This temperature is limited by the construction standard and jacket selection. The conductor shield is always permanently bonded to the EPR or XLPE cable insulation in the solid dielectric cable. The semi-conductive insulation shield can be bonded or removable depending on the desires of the purchaser. For voltages 69KV and up the insulation shield is generally bonded. A strippable insulation shield is purchased to reduce splicing time and skill. It can be argued that strippable Semicon can lead to fewer workmanship issues at medium voltage. With paper insulated cables the semiconducting layers consist of carbon-bearing or metalized tapes applied over the conductor and paper insulation. The function of these layers is to prevent air-filled cavities and suppress voltage stress between the metal conductors and the dielectric so that little
electric discharge In electromagnetism, an electric discharge is the release and transmission of electricity in an applied electric field through a medium such as a gas (i.e., an outgoing flow of electric current through a non-metal medium).American Geophysical U ...
s cannot arise and endanger the insulation material. The insulation shield is covered by a copper, aluminum, or lead "screen." The metallic shield or sheath serves as an earthed layer and will drain leakage currents. The shield's function is not to conduct faults but that functionality can be designed if desired. Some designs that could be used are copper tape, concentric copper wires, longitudinally corrugated shields, copper flat straps, or extruded lead sheath. The cable jacket is often polymeric. The function of the jacket is to provide mechanical protection as well as prevent moisture & chemical intrusion. Jackets can be semiconducting or non-conducting depending on soil conditions and desired grounding configuration. Semiconducting jackets can also be employed on cables to help with a jacket integrity test. Some types of jackets are LLDPE, HDPE, polypropylene, PVC (bottom end of the market), LSZH, etc.


Quality

During the development of high voltage insulation, which has taken about half a century, two characteristics proved to be paramount. First, the introduction of the semiconducting layers. These layers must be absolutely smooth, without even protrusions as small as a few
μm The micrometre (Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a unit of length in the International System ...
. Further, the fusion between the insulation and these layers must be absolute; any fission, air-pocket or other defect — again, even of a few μm — is detrimental to the cable. Second, the insulation must be free of inclusions, cavities, or other defects of the same sort of size. Any defect of these types shortens the voltage life of the cable which is supposed to be in the order of 30 years or more. Cooperation between cable makers and manufacturers of materials has resulted in grades of XLPE with tight specifications. Most producers of XLPE-compound specify an "extra clean" grade where the number and size of foreign particles are guaranteed. Packing the raw material and unloading it within a
cleanroom A cleanroom or clean room is an engineered space that maintains a very low concentration of airborne particulates. It is well-isolated, well-controlled from contamination, and actively cleansed. Such rooms are commonly needed for scientifi ...
environment in the cable-making machines is required. The development of extruders for
plastics extrusion Plastics extrusion is a high-volume manufacturing process in which raw plastic is melted and formed into a continuous profile. Extrusion produces items such as pipe/tubing, weatherstripping, fencing, deck railings, window frames, plastic f ...
and
cross-link In chemistry and biology, a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural ...
ing has resulted in cable-making installations for making defect-free and pure insulations. The final quality control test is an elevated voltage 50 or 60 Hz partial discharge test with very high sensitivity (in the range of 5 to 10 picocoulombs) This test is performed on every reel of cable before it is shipped.


HVDC cable

A high-voltage cable for
high-voltage direct current A high-voltage direct current (HVDC) electric power transmission system uses direct current (DC) for electric power transmission, in contrast with the more common alternating current (AC) transmission systems. Most HVDC links use voltages betwe ...
(HVDC) transmission has the same construction as the AC cable shown in figure 1. The physics and the test requirements are different. In this case the smoothness of the semiconducting layers (2) and (4) is of utmost importance. Cleanliness of the insulation remains imperative. The semiconducting material can be plastic XLPE (
Cross-linked polyethylene Cross-linked polyethylene, commonly abbreviated PEX, XPE or XLPE, is a form of polyethylene with cross-links. It is used predominantly in building services pipework systems, hydronic radiant heating and cooling systems, domestic water piping, in ...
) with carbon black. Many HVDC cables are used for DC submarine connections, because at distances over approximately 100 km AC can no longer be used. As of 2021 the longest submarine cable is the
North Sea Link The North Sea Link is a 1,400MW high-voltage direct current submarine power cable between Norway and the United Kingdom. At it was the longest subsea interconnector in the world when it became operational on 1 October 2021. Route The cable ru ...
cable between Norway and the UK which is long.


Cable terminals

Terminals of high-voltage cables must manage the
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
s at the ends. Without such a construction the electric field will concentrate at the end of the earth-conductor as shown in figure 8. Equipotential lines are shown here, which can be compared with the
contour line A contour line (also isoline, isopleth, isoquant or isarithm) of a Function of several real variables, function of two variables is a curve along which the function has a constant value, so that the curve joins points of equal value. It is a ...
s on a map of a mountainous region: the nearer these lines are to each other, the steeper the slope and the greater the danger, in this case, the danger of an
electrical breakdown In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material (a dielectric), subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All ...
. The equipotential lines can also be compared with the isobars on a weather map: The denser the lines, the more wind and the greater the danger of damage. In order to control the equipotential lines (that is to control the electric field) a device is used that is called a stress cone, see figure 9. The crux of stress relief is to flare the shield end along a logarithmic curve. Before 1960, the stress cones were handmade using tape—after the cable was installed. These were protected by
pothead A pothead is a type of insulated electrical terminal used for transitioning between overhead line and underground high-voltage cable or for connecting overhead wiring to equipment like transformers. Its name comes from the process of potting o ...
s, so named because a potting compound/dielectric was poured around the tape inside a metal/ porcelain body insulator. About 1960, preformed terminations were developed consisting of a
rubber Rubber, also called India rubber, latex, Amazonian rubber, ''caucho'', or ''caoutchouc'', as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds. Types of polyisoprene ...
or
elastomer An elastomer is a polymer with viscoelasticity (i.e. both viscosity and elasticity) and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. The term, a portmanteau of ''ela ...
body that is stretched over the cable end. On this rubber-like body R a shield electrode is applied that spreads the equipotential lines to guarantee a low electric field. The crux of this device, invented by NKF in
Delft Delft () is a List of cities in the Netherlands by province, city and Municipalities of the Netherlands, municipality in the Provinces of the Netherlands, province of South Holland, Netherlands. It is located between Rotterdam, to the southeast, ...
in 1964, is that the bore of the elastic body is narrower than the diameter of the cable. In this way the (blue) interface between cable and stress-cone is brought under mechanical pressure so that no cavities or air pockets can be formed between cable and cone. Electric breakdown in this region is prevented in this way. This construction can further be surrounded by a
porcelain Porcelain (), also called china, is a ceramic material made by heating Industrial mineral, raw materials, generally including kaolinite, in a kiln to temperatures between . The greater strength and translucence of porcelain, relative to oth ...
or silicone insulator for outdoor use, or by contraptions to enter the cable into a
power transformer Power may refer to: Common meanings * Power (physics), meaning "rate of doing work" ** Engine power, the power put out by an engine ** Electric power, a type of energy * Power (social and political), the ability to influence people or events Ma ...
under oil, or
switchgear In an electric power system, a switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to ...
under gas pressure.


Cable joints

Connecting two high-voltage cables with one another poses two main problems. First, the outer conducting layers in both cables must be terminated without causing a field concentration, as with the making of a cable terminal. Secondly, a field-free space must be created where the cut-down cable insulation and the connector of the two conductors safely can be accommodated. These problems were solved by NKF in
Delft Delft () is a List of cities in the Netherlands by province, city and Municipalities of the Netherlands, municipality in the Provinces of the Netherlands, province of South Holland, Netherlands. It is located between Rotterdam, to the southeast, ...
in 1965 by introducing a device called bi-manchet cuff. Figure 10 shows a photograph of the cross-section of such a device. At one side of this photograph, the contours of a high-voltage cable are drawn. Here red represents the conductor of that cable and blue the insulation of the cable. The black parts in this picture are semiconducting rubber parts. The outer one is at earth potential and spreads the electric field in a similar way as in a cable terminal. The inner one is at high voltage and shields the connector of the conductors from the electric field. The field itself is diverted as shown in figure 11, where the equipotential lines are smoothly directed from the inside of the cable to the outer part of the bi-manchet (and vice versa at the other side of the device). The crux of the matter is here, like in the cable terminal, that the inner bore of this bi-manchet is chosen smaller than the diameter over the cable insulation. In this way a permanent pressure is created between the bi-manchet and the cable surface, and cavities or electrical weak points are avoided. Installing a terminal or bi-manchet cuff is skilled work. The technical steps of removing the outer semiconducting layer at the end of the cables, placing the field-controlling bodies, connecting the conductors, etc., require skill, cleanliness, and precision.


Hand-taped joints

Hand taped joints are the old-school method of splicing and terminating cable. The construction of these joints involves taking several types of tape and manually building up appropriate stress relief. Some of the tapes involved could be rubber tapes, semiconducting tapes, friction tapes, varnished cambric tapes, etc. This splicing method is incredibly labor and time-intensive. It requires measuring the diameter and length of the layers being built up. Often the tapes must be half-lapped and pulled tight to prevent the formation of windows or voids in the resulting splice. Waterproofing hand taped splicing is very difficult.


Pre-molded joints

Pre-molded joints are injection molded bodies created in two or more stages. Due to automation, the faraday cage will have a precise geometry and placement not achievable in taped joints. Pre-molded joints come in many different body sizes that much be matched up to the cable Semicon's outside diameter. A tight joint interface is required to ensure waterproofing. These joints are often pushed on and can cause soft tissue injuries among craftsmen.


Heat shrink joints

Heat shrink joints consist of many different heat shrink tubes: insulating and conducting. These kits are less labor-intensive than taping but more than pre-molded. There can be concerns about having an open flame in a manhole or building vault. There can also be workmanship concerns with using a torch as the tubes must be fully recovered without scorching and any mastics used must flow into the voids and eliminate any air. Sufficient time and heat must be given. There are also a high number of components that must be placed in the correct order and position relative to the center of the joint.


Cold shrink joints

Cold shrink is the newest family of joints. The idea is a polymer tube is formed at the correct diameter for the cable. It is then expanded over a form and placed onto a hold-out tube at the factory. Then ready for installation the joint is very easily slipped over the cable end. After the connector is installed the splicer simply needs to center the joint body and then release the holdout. The tube will automatically recover to the original size. The only complication is cold shrink has a shelf life of approximately 2–3 years. After that time period, the rubber will form memory and not recover down to the intended size. This can lead to joint failure if not installed before the recommended date. From a utility perspective, this makes it difficult to keep track of stock or retain emergency spares for critical customers. Cold shrink is the more rapidly growing area of distribution splices and is thought to have the fewest workmanship issues with the quickest install times.


X-ray cable

X-ray cables Kreuger 1991 Vol. 1, pp. 65, 133 are used in lengths of several meters to connect the HV source with an
X-ray tube An X-ray tube is a vacuum tube that converts electrical input power into X-rays. The availability of this controllable source of X-rays created the field of radiography, the imaging of partly opaque objects with penetrating radiation. In contras ...
or any other HV device in scientific equipment. They transmit small currents, in the order of milliamperes at DC voltages of 30 to 200 kV, or sometimes higher. The cables are flexible, with rubber or other
elastomer An elastomer is a polymer with viscoelasticity (i.e. both viscosity and elasticity) and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. The term, a portmanteau of ''ela ...
insulation, stranded conductors, and an outer sheath of braided copper wire. The construction has the same elements as other HV power cables.


Testing of high-voltage cables

There are different causes for faulty cable insulation when considering solid dielectric or paper insulation. Hence, there are various test and measurement methods to prove fully functional cables or to detect faulty ones. While paper cables are primarily tested with DC insulation resistance tests the most common test for solid dielectric cable systems is the partial discharge test. One needs to distinguish between cable testing and cable diagnosis. While cable testing methods result in a go/no go statement cable diagnosis methods allow judgment of the cable's current condition. With some tests, it is even possible to locate the position of the defect in the insulation before failure. In some cases,
electrical treeing In electrical engineering, treeing is an electrical pre-breakdown phenomenon in solid insulation. It is a damaging process due to partial discharges and progresses through the stressed dielectric insulation, in a path resembling the branches o ...
(water trees) can be detected by tan delta measurement. Interpretation of measurement results can in some cases yield the possibility to distinguish between new, strongly water treed cable. Unfortunately, there are many other issues that can erroneously present themselves as high tangent delta, and the vast majority of solid dielectric defects can not be detected with this method. Damage to the insulation and electrical treeing may be detected and located by
partial discharge measurement In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) (which does not completely bridge the space between the two conductors) of a small portion of a solid or fluid electrical insulation (EI) system under hig ...
. Data collected during the measurement procedure are compared to measurement values of the same cable gathered during the acceptance test. This allows a simple and quick classification of the dielectric condition of the tested cable. Just like with tangent delta, this method has many caveats, but with good adherence to factory test standards, field results can be very reliable.


See also

*
Electric power transmission Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a ''transmission network''. This is ...
*
High-voltage direct current A high-voltage direct current (HVDC) electric power transmission system uses direct current (DC) for electric power transmission, in contrast with the more common alternating current (AC) transmission systems. Most HVDC links use voltages betwe ...
*
Power cable A power cable is an electrical cable used specifically for transmission of electric energy, electrical power. It is an assembly of one or more electrical conductors, usually held together in a single bundle with an insulator (electricity), insu ...
* VLF cable testing


References


Sources

: : :


Notes


External links


Tan delta measurement of medium- and high-voltage cables


* ttp://www.himalayal.com/upfile/High_Voltage_Testing_Research_PDF/On_Site_AC_Withstand_Test_of_200kV_XLPE_Cross_linked_Cable_System.pdf On-site AC Withstand test for 200kV High Voltage Cable {{DEFAULTSORT:High Voltage Cable Electric power transmission Power cables