Black Hole (NASA)
   HOME

TheInfoList



OR:

A black hole is a massive, compact
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
so dense that its gravity prevents anything from escaping, even light.
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
's theory of
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
predicts that a sufficiently compact
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
will form a black hole. The boundary of no escape is called the
event horizon In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive c ...
. A black hole has a great effect on the fate and circumstances of an object crossing it, but has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal
black body A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is ...
, as it reflects no light.
Quantum field theory in curved spacetime In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed ...
predicts that event horizons emit
Hawking radiation Hawking radiation is black-body radiation released outside a black hole's event horizon due to quantum effects according to a model developed by Stephen Hawking in 1974. The radiation was not predicted by previous models which assumed that onc ...
, with the same spectrum as a black body of a
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
inversely proportional to its mass. This temperature is of the order of billionths of a
kelvin The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
for
stellar black hole A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. They are the remnants of supernova explosions, which may be ...
s, making it essentially impossible to observe directly. Objects whose
gravitational field In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. A gravitational field is used to explain gravitational phenomena, such as ...
s are too strong for light to escape were first considered in the 18th century by
John Michell John Michell (; 25 December 1724 – 21 April 1793) was an English natural philosopher and clergyman who provided pioneering insights into a wide range of scientific fields including astronomy, geology, optics, and gravitation. Considered "on ...
and
Pierre-Simon Laplace Pierre-Simon, Marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French polymath, a scholar whose work has been instrumental in the fields of physics, astronomy, mathematics, engineering, statistics, and philosophy. He summariz ...
. In 1916,
Karl Schwarzschild Karl Schwarzschild (; 9 October 1873 – 11 May 1916) was a German physicist and astronomer. Schwarzschild provided the first exact solution to the Einstein field equations of general relativity, for the limited case of a single spherical non-r ...
found the first modern solution of general relativity that would characterise a black hole. Due to his influential research, the
Schwarzschild metric In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumpti ...
is named after him.
David Finkelstein David Ritz Finkelstein (July 19, 1929 – January 24, 2016) was an emeritus professor of physics at the Georgia Institute of Technology. Biography Born in New York City, Finkelstein obtained his Ph.D. in physics at the Massachusetts Institute o ...
, in 1958, first published the interpretation of "black hole" as a region of space from which nothing can escape. Black holes were long considered a mathematical curiosity; it was not until the 1960s that theoretical work showed they were a generic prediction of general relativity. The first black hole known was
Cygnus X-1 Cygnus X-1 (abbreviated Cyg X-1) is a galactic X-ray source in the constellation Cygnus and was the first such source widely accepted to be a black hole. It was discovered in 1964 during a rocket flight and is one of the ...
, identified by several researchers independently in 1971. Black holes typically form when massive stars collapse at the end of their
life cycle Life cycle, life-cycle, or lifecycle may refer to: Science and academia *Biological life cycle, the sequence of life stages that an organism undergoes from conception to reproduction *Life-cycle hypothesis, in economics *Erikson's stages of psy ...
. After a black hole has formed, it can grow by absorbing mass from its surroundings. Supermassive black holes of millions of solar masses may form by absorbing other stars and merging with other black holes, or via direct collapse of gas clouds. There is consensus that
supermassive black hole A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions, of times the mass of the Sun (). Black holes are a class of astronomical ...
s exist in the centres of most
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar Sys ...
. The presence of a black hole can be inferred through its interaction with other
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
and with electromagnetic radiation such as visible light. Matter falling toward a black hole can form an
accretion disk An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and ...
of infalling plasma, heated by
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
and emitting light. In extreme cases, this creates a
quasar A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
, some of the brightest objects in the universe. Stars passing too close to a supermassive black hole can be shredded into streamers that shine very brightly before being "swallowed." If other stars are orbiting a black hole, their orbits can be used to determine the black hole's mass and location. Such observations can be used to exclude possible alternatives such as
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
s. In this way, astronomers have identified numerous stellar black hole candidates in
binary systems Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two values (0 and 1) for each digit * Binary function, a function that takes two arguments * Binary operation, a mathematical op ...
and established that the radio source known as
Sagittarius A* Sagittarius A*, abbreviated as Sgr A* ( ), is the supermassive black hole at the Galactic Center of the Milky Way. Viewed from Earth, it is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south o ...
, at the core of the
Milky Way The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
galaxy, contains a supermassive black hole of about 4.3 million
solar Solar may refer to: Astronomy * Of or relating to the Sun ** Solar telescope, a special purpose telescope used to observe the Sun ** A device that utilizes solar energy (e.g. "solar panels") ** Solar calendar, a calendar whose dates indicate t ...
masses.


History

The idea of a body so big that even light could not escape was briefly proposed by English astronomical pioneer and clergyman
John Michell John Michell (; 25 December 1724 – 21 April 1793) was an English natural philosopher and clergyman who provided pioneering insights into a wide range of scientific fields including astronomy, geology, optics, and gravitation. Considered "on ...
and independently by French scientist
Pierre-Simon Laplace Pierre-Simon, Marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French polymath, a scholar whose work has been instrumental in the fields of physics, astronomy, mathematics, engineering, statistics, and philosophy. He summariz ...
. Both scholars proposed very large stars rather than the modern model of stars with extraordinary density. Michell's idea, in a short part of a letter published in 1784, calculated that a star with the same density but 500 times the radius of the sun would not let any emitted light escape; the surface
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: * Ballistic trajectory – no other forces are acting on the object, such as ...
would exceed the speed of light. Michell correctly noted that such supermassive but non-radiating bodies might be detectable through their gravitational effects on nearby visible bodies. In 1796, Laplace mentioned that a star could be invisible if it were sufficiently large while speculating on the origin of the Solar System in his book ''Exposition du Système du Monde.''
Franz Xaver von Zach Baron Franz Xaver von Zach (''Franz Xaver Freiherr von Zach''; 4 June 1754 – 2 September 1832) was an Austrian astronomer born at Pest, Hungary (now Budapest in Hungary). Biography Zach studied physics at the Royal University of Pest, and ...
asked Laplace for a mathematical analysis, which Laplace provided and published in journal edited by von Zach. Scholars of the time were initially excited by the proposal that giant but invisible 'dark stars' might be hiding in plain view, but enthusiasm dampened when the wavelike nature of light became apparent in the early nineteenth century, since light was understood as a wave rather than a particle, it was unclear what, if any, influence gravity would have on escaping light waves.


General relativity

In 1915,
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
developed his theory of
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, having earlier shown that gravity does influence light's motion. Only a few months later,
Karl Schwarzschild Karl Schwarzschild (; 9 October 1873 – 11 May 1916) was a German physicist and astronomer. Schwarzschild provided the first exact solution to the Einstein field equations of general relativity, for the limited case of a single spherical non-r ...
found a
solution Solution may refer to: * Solution (chemistry), a mixture where one substance is dissolved in another * Solution (equation), in mathematics ** Numerical solution, in numerical analysis, approximate solutions within specified error bounds * Solu ...
to the
Einstein field equations In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it. ...
that describes the
gravitational field In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. A gravitational field is used to explain gravitational phenomena, such as ...
of a
point mass A point particle, ideal particle or point-like particle (often spelled pointlike particle) is an idealization (science philosophy), idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension (metap ...
and a spherical mass. :* Translation: and :* Translation: A few months after Schwarzschild,
Johannes Droste Johannes Droste (28 May 1886 – 16 September 1963) was a Dutch mathematician and the second person, after Karl Schwarzschild, to have solved Einstein's field equation. Biography On 27 May 1916, a student of Hendrik Lorentz at the University ...
, a student of
Hendrik Lorentz Hendrik Antoon Lorentz ( ; ; 18 July 1853 – 4 February 1928) was a Dutch theoretical physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for their discovery and theoretical explanation of the Zeeman effect. He derive ...
, independently gave the same solution for the point mass and wrote more extensively about its properties. This solution had a peculiar behaviour at what is now called the
Schwarzschild radius The Schwarzschild radius is a parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius of a sphere in flat space that has the same surface area as that of the event horizon of a Schwarzschild black ho ...
, where it became
singular Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular or sounder, a group of boar, see List of animal names * Singular (band), a Thai jazz pop duo *'' Singula ...
, meaning that some of the terms in the Einstein equations became infinite. The nature of this surface was not quite understood at the time. In 1924,
Arthur Eddington Sir Arthur Stanley Eddington, (28 December 1882 – 22 November 1944) was an English astronomer, physicist, and mathematician. He was also a philosopher of science and a populariser of science. The Eddington limit, the natural limit to the lu ...
showed that the singularity disappeared after a change of coordinates. In 1933,
Georges Lemaître Georges Henri Joseph Édouard Lemaître ( ; ; 17 July 1894 – 20 June 1966) was a Belgian Catholic priest, theoretical physicist, and mathematician who made major contributions to cosmology and astrophysics. He was the first to argue that the ...
realised that this meant the singularity at the Schwarzschild radius was a non-physical
coordinate singularity In mathematics and physics, a coordinate singularity occurs when an apparent singularity or discontinuity occurs in one coordinate frame that can be removed by choosing a different frame. An example is the apparent (longitudinal) singularity a ...
. Arthur Eddington commented on the possibility of a star with mass compressed to the Schwarzschild radius in a 1926 book, noting that Einstein's theory allows us to rule out overly large densities for visible stars like
Betelgeuse Betelgeuse is a red supergiant star in the constellation of Orion (constellation), Orion. It is usually the List of brightest stars, tenth-brightest star in the night sky and, after Rigel, the second brightest in its constellation. It i ...
because "a star of 250 million km radius could not possibly have so high a density as the Sun. Firstly, the force of gravitation would be so great that light would be unable to escape from it, the rays falling back to the star like a stone to the earth. Secondly, the red shift of the spectral lines would be so great that the spectrum would be shifted out of existence. Thirdly, the mass would produce so much curvature of the spacetime metric that space would close up around the star, leaving us outside (i.e., nowhere)." In 1931,
Subrahmanyan Chandrasekhar Subrahmanyan Chandrasekhar (; 19 October 1910 – 21 August 1995) was an Indian Americans, Indian-American theoretical physicist who made significant contributions to the scientific knowledge about the structure of stars, stellar evolution and ...
calculated, using special relativity, that a non-rotating body of
electron-degenerate matter Degenerate matter occurs when the Pauli exclusion principle significantly alters a state of matter at low temperature. The term is used in astrophysics to refer to dense stellar objects such as white dwarfs and neutron stars, where thermal pressu ...
above a certain limiting mass (now called the
Chandrasekhar limit The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about (). The limit was named after Subrahmanyan Chandrasekhar. White dwarfs resist gravitational collapse pr ...
at ) has no stable solutions. His arguments were opposed by many of his contemporaries like Eddington and
Lev Landau Lev Davidovich Landau (; 22 January 1908 – 1 April 1968) was a Soviet physicist who made fundamental contributions to many areas of theoretical physics. He was considered as one of the last scientists who were universally well-versed and ma ...
, who argued that some yet unknown mechanism would stop the collapse. They were partly correct: a
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
slightly more massive than the Chandrasekhar limit will collapse into a
neutron star A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
, which is itself stable. In 1939,
Robert Oppenheimer J. Robert Oppenheimer (born Julius Robert Oppenheimer ; April 22, 1904 – February 18, 1967) was an American theoretical physicist who served as the director of the Manhattan Project's Los Alamos Laboratory during World War II. He is often ...
and
George Volkoff George Michael Volkoff, (February 23, 1914 – April 24, 2000) was a Russian-Canadian physicist and academic who helped, with J. Robert Oppenheimer, predict the existence of neutron stars before they were discovered. Early life He was born ...
predicted that neutron stars above another limit, the
Tolman–Oppenheimer–Volkoff limit The Tolman–Oppenheimer–Volkoff limit (or TOV limit) is an upper bound to the mass of cold, non-rotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. Stars more massive than the TOV limit collapse into a black hol ...
, would collapse further for the reasons presented by Chandrasekhar, and concluded that no law of physics was likely to intervene and stop at least some stars from collapsing to black holes. Their original calculations, based on the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle (German: Pauli-Ausschlussprinzip) states that two or more identical particles with half-integer spins (i.e. fermions) cannot simultaneously occupy the same quantum state within a system that o ...
, gave it as . Subsequent consideration of neutron-neutron repulsion mediated by the strong force raised the estimate to approximately to . Observations of the neutron star merger
GW170817 GW170817 was a gravitational wave (GW) observed by the LIGO and Virgo detectors on 17 August 2017, originating within the shell elliptical galaxy NGC 4993, about 144 million light years away. The wave was produced by the last moments of the in ...
, which is thought to have generated a black hole shortly afterward, have refined the TOV limit estimate to ~. Oppenheimer and his co-authors interpreted the singularity at the boundary of the Schwarzschild radius as indicating that this was the boundary of a bubble in which time stopped. This is a valid point of view for external observers, but not for infalling observers. The hypothetical collapsed stars were called "frozen stars", because an outside observer would see the surface of the star frozen in time at the instant where its collapse takes it to the Schwarzschild radius. Also in 1939, Einstein attempted to prove that black holes were impossible in his publication "On a Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses", using his theory of general relativity to defend his argument. Months later, Oppenheimer and his student
Hartland Snyder Hartland Sweet Snyder (1913 – May 22, 1962) was an American physicist who, together with J. Robert Oppenheimer, showed how large stars would collapse to form black holes. This work modeled the gravitational collapse of a pressure-free homogene ...
provided the
Oppenheimer–Snyder model In general relativity, the Oppenheimer–Snyder model is a solution to the Einstein field equations based on the Schwarzschild metric describing the collapse of an object of extreme mass into a black hole. It is named after physicists J. Robert O ...
in their paper "On Continued Gravitational Contraction", which predicted the existence of black holes. In the paper, which made no reference to Einstein's recent publication, Oppenheimer and Snyder used Einstein's own theory of general relativity to show the conditions on how a black hole could develop, for the first time in contemporary physics. In 1958,
David Finkelstein David Ritz Finkelstein (July 19, 1929 – January 24, 2016) was an emeritus professor of physics at the Georgia Institute of Technology. Biography Born in New York City, Finkelstein obtained his Ph.D. in physics at the Massachusetts Institute o ...
identified the Schwarzschild surface as an event horizon, "a perfect unidirectional membrane: causal influences can cross it in only one direction". Finkelstein created a new reference frame to include the point of view of infalling observers. Finkelstein's solution extended the Schwarzschild solution for the future of observers falling into a black hole. A similar concept had already been found by
Martin Kruskal Martin David Kruskal (; September 28, 1925 – December 26, 2006) was an American mathematician and physicist. He made fundamental contributions in many areas of mathematics and science, ranging from plasma physics to general relativity and ...
but Wheeler had not understood its significance. Eventually the
Kruskal–Szekeres coordinates In general relativity, Kruskal–Szekeres coordinates, named after Martin Kruskal and George Szekeres, are a coordinate system for the Schwarzschild geometry for a black hole. These coordinates have the advantage that they cover the entire spa ...
helped physics understand black holes from multiple perspectives.


Golden age

The era from the mid-1960s to the mid-1970s was the "golden age of black hole research", when general relativity and black holes became mainstream subjects of research. In this period more general black hole solutions were found. In 1963,
Roy Kerr Roy Patrick Kerr (; born 16 May 1934) is a New Zealand mathematician who discovered the Kerr geometry, an exact solution to the Einstein field equation of general relativity. His solution models the gravitational field outside an uncharged ...
found the exact solution for a
rotating black hole A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All currently known celestial objects, including planets, stars (Sun), galaxies, and black holes, spin about one ...
. Two years later, Ezra Newman found the
axisymmetric Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in whic ...
solution for a black hole that is both rotating and
electrically charged Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
. Through the work of
Werner Israel Werner Israel, (October 4, 1931 – May 18, 2022) was a theoretical physicist known for his contributions to gravitational theory, and especially to the understanding of black holes. Biography Israel was born in Berlin, Germany in 1931. H ...
,
Brandon Carter Brandon Carter, (born 1942) is an Australian theoretical physics, theoretical physicist who explores the properties of black holes, and was the first to name and employ the anthropic principle in its contemporary form. He is a researcher at t ...
, and David Robinson the
no-hair theorem The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent ''externally'' observabl ...
emerged, stating that a stationary black hole solution is completely described by the three parameters of the
Kerr–Newman metric The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric (which describes an uncharged, rotating mass) by additionally taking in ...
:
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
,
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
, and electric charge. At first, it was suspected that the strange features of the black hole solutions were pathological artefacts from the symmetry conditions imposed, and that the singularities would not appear in generic situations. This view was held in particular by Vladimir Belinsky,
Isaak Khalatnikov Isaak Markovich Khalatnikov (, ; 17 October 1919 – 9 January 2021) was a leading Soviet theoretical physicist who made significant contributions to many areas of theoretical physics, including general relativity, quantum field theory, as well ...
, and
Evgeny Lifshitz Evgeny Mikhailovich Lifshitz (; ; 21 February 1915 – 29 October 1985) was a leading Soviet physicist and brother of the physicist Ilya Lifshitz. Work Born into a Ukrainian Jewish family in Kharkov, Kharkov Governorate, Russian Empire (now K ...
, who tried to prove that no singularities appear in generic solutions. However, in the late 1960s
Roger Penrose Sir Roger Penrose (born 8 August 1931) is an English mathematician, mathematical physicist, Philosophy of science, philosopher of science and Nobel Prize in Physics, Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics i ...
and
Stephen Hawking Stephen William Hawking (8January 194214March 2018) was an English theoretical physics, theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between ...
used global techniques to prove that singularities appear generically. For this work, Penrose received half of the 2020
Nobel Prize in Physics The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
, Hawking having died in 2018. Astronomical observations also made great strides during this era. In 1967
Antony Hewish Antony Hewish (11 May 1924 – 13 September 2021) was a British radio astronomer who won the Nobel Prize for Physics in 1974 (together with fellow radio-astronomer Martin Ryle) for his role in the discovery of pulsars. He was also awarded the ...
and
Jocelyn Bell Burnell Dame Susan Jocelyn Bell Burnell (; Bell; born 15 July 1943) is a Northern Irish physicist who, as a doctoral student, discovered the first radio pulsars in 1967. This discovery later earned the Nobel Prize in Physics in 1974, but she was not ...
discovered
pulsar A pulsar (''pulsating star, on the model of quasar'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its Poles of astronomical bodies#Magnetic poles, magnetic poles. This radiation can be obse ...
s and by 1969, these were shown to be rapidly rotating neutron stars. Until that time, neutron stars, like black holes, were regarded as just theoretical curiosities; but the discovery of pulsars showed their physical relevance and spurred a further interest in all types of compact objects that might be formed by gravitational collapse. Based on observations in
Greenwich Greenwich ( , , ) is an List of areas of London, area in south-east London, England, within the Ceremonial counties of England, ceremonial county of Greater London, east-south-east of Charing Cross. Greenwich is notable for its maritime hi ...
and
Toronto Toronto ( , locally pronounced or ) is the List of the largest municipalities in Canada by population, most populous city in Canada. It is the capital city of the Provinces and territories of Canada, Canadian province of Ontario. With a p ...
in the early 1970s,
Cygnus X-1 Cygnus X-1 (abbreviated Cyg X-1) is a galactic X-ray source in the constellation Cygnus and was the first such source widely accepted to be a black hole. It was discovered in 1964 during a rocket flight and is one of the ...
, a galactic
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
source discovered in 1964, became the first astronomical object commonly accepted to be a black hole. Work by
James Bardeen James Maxwell Bardeen (May 9, 1939 – June 20, 2022) was an American physicist, well known for his work in general relativity, particularly his role in formulating the laws of black hole mechanics. He also discovered the Bardeen vacuum, an ...
,
Jacob Bekenstein Jacob David Bekenstein (; May 1, 1947 – August 16, 2015) was a Mexican-born American-Israeli theoretical physicist who made fundamental contributions to the foundation of black hole thermodynamics and to other aspects of the connections betwee ...
, Carter, and Hawking in the early 1970s led to the formulation of
black hole thermodynamics In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the deve ...
. These laws describe the behaviour of a black hole in close analogy to the
laws of thermodynamics The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various param ...
by relating mass to energy, area to
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, and
surface gravity The surface gravity, ''g'', of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experi ...
to
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
. The analogy was completed when Hawking, in 1974, showed that
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
implies that black holes should radiate like a
black body A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is ...
with a temperature proportional to the surface gravity of the black hole, predicting the effect now known as
Hawking radiation Hawking radiation is black-body radiation released outside a black hole's event horizon due to quantum effects according to a model developed by Stephen Hawking in 1974. The radiation was not predicted by previous models which assumed that onc ...
.


Observation

On 11 February 2016, the
LIGO Scientific Collaboration The LIGO Scientific Collaboration (LSC) is a scientific collaboration of international physics institutes and research groups dedicated to the search for gravitational waves. History The LSC was established in 1997, under the leadership of Bar ...
and the
Virgo collaboration The Virgo interferometer is a large-scale scientific instrument near Pisa, Italy, for detecting gravitational waves. The detector is a Michelson interferometer, which can detect the minuscule length variations in its two arms induced by the p ...
announced the first direct detection of
gravitational wave Gravitational waves are oscillations of the gravitational field that Wave propagation, travel through space at the speed of light; they are generated by the relative motion of gravity, gravitating masses. They were proposed by Oliver Heaviside i ...
s, representing the first observation of a black hole merger. On 10 April 2019, the first direct image of a black hole and its vicinity was published, following observations made by the
Event Horizon Telescope The Event Horizon Telescope (EHT) is a Astronomical interferometer, telescope array consisting of a global network of radio telescopes. The EHT project combines data from several very-long-baseline interferometry (VLBI) stations around Earth, wh ...
(EHT) in 2017 of the supermassive black hole in Messier 87's galactic centre.
Gaia mission ''Gaia'' was a space observatory of the European Space Agency (ESA) that was launched in 2013 and operated until March 2025. The spacecraft was designed for astrometry: measuring the positions, distances and motions of stars with unprecedented ...
observations have found evidence of a Sun-like star orbiting a black hole named
Gaia BH1 Gaia BH1 (Gaia DR3 4373465352415301632) is a binary system consisting of a G-type main-sequence star and a likely stellar-mass black hole, located about away from the Solar System in the constellation of Ophiuchus. , it is the nearest ...
around away; evidence suggests a brown dwarf star orbits
Gaia BH2 Gaia BH2 (Gaia DR3 5870569352746779008) is a binary system consisting of a red giant and a stellar-mass black hole. Gaia BH2 is located about 3,800 light years away ( away) in the constellation of Centaurus, making it the third-closes ...
. Though only a couple dozen black holes have been found so far in the Milky Way, there are thought to be hundreds of millions, most of which are solitary and do not cause emission of radiation. Therefore, they would only be detectable by
gravitational lens A gravitational lens is matter, such as a galaxy cluster, cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's Ge ...
ing.


Etymology

In December 1967, a student reportedly suggested the phrase "black hole" at a lecture by John Wheeler; Wheeler adopted the term for its brevity and "advertising value", and Wheeler's stature in the field ensured it quickly caught on. leading some to credit Wheeler with coining the phrase. However the term was used by others around that time. Science writer Marcia Bartusiak traces the term "black hole" to physicist
Robert H. Dicke Robert Henry Dicke (; May 6, 1916 – March 4, 1997) was an American astronomer and physicist who made important contributions to the fields of astrophysics, atomic physics, cosmology and gravity. He was the Albert Einstein Professor in Scien ...
, who in the early 1960s reportedly compared the phenomenon to the
Black Hole of Calcutta The Black Hole of Calcutta was a dungeon in Fort William, West Bengal, Fort William, Calcutta, measuring , in which troops of Siraj-ud-Daulah, the Nawabs of Bengal, Nawab of Bengal, held British Prisoner of war, prisoners of war on the night ...
, notorious as a prison where people entered but never left alive. The term "black hole" was used in print by ''
Life Life, also known as biota, refers to matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes. It is defined descriptively by the capacity for homeostasis, Structure#Biological, organisation, met ...
'' and ''
Science News ''Science News'' (''SN'') is an American monthly magazine devoted to articles about new scientific and technical developments, typically gleaned from recent scientific and technical journals. The periodical has been described as having a scop ...
'' magazines in 1963, and by science journalist Ann Ewing in her article Black Holes' in Space", dated 18 January 1964, which was a report on a meeting of the
American Association for the Advancement of Science The American Association for the Advancement of Science (AAAS) is a United States–based international nonprofit with the stated mission of promoting cooperation among scientists, defending scientific freedom, encouraging scientific responsib ...
held in Cleveland, Ohio.


Properties and structure

The
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: * Ballistic trajectory – no other forces are acting on the object, such as ...
from a black hole exceeds the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. The formula for escape velocity is V = \sqrt for an object at radius from a spherical mass , with being the gravitational constant. When the velocity is the speed of light, , the radius, R_s = 2MG/c^2, is called the
Schwarzschild radius The Schwarzschild radius is a parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius of a sphere in flat space that has the same surface area as that of the event horizon of a Schwarzschild black ho ...
. A technical definition of a black hole is any object whose mass is contained in a radius smaller than its
Schwarzschild radius The Schwarzschild radius is a parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius of a sphere in flat space that has the same surface area as that of the event horizon of a Schwarzschild black ho ...
, a limit derived from one solution to the equations of general relativity. The
no-hair theorem The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent ''externally'' observabl ...
postulates that, once it achieves a stable condition after formation, a black hole has only three independent physical properties: mass, electric charge, and angular momentum; the black hole is otherwise featureless. If the conjecture is true, any two black holes that share the same values for these properties, or parameters, are indistinguishable from one another. The degree to which the conjecture is true for real black holes under the laws of modern physics is currently an unsolved problem. These properties are special because they are visible from outside a black hole. For example, a charged black hole repels other like charges just like any other charged object. Similarly, the total mass inside a sphere containing a black hole can be found by using the gravitational analogue of Gauss's law (through the
ADM mass The Arnowitt–Deser–Misner (ADM) formalism (named for its authors Richard Arnowitt, Stanley Deser and Charles W. Misner) is a Hamiltonian mechanics, Hamiltonian formulation of general relativity that plays an important role in canonical quant ...
), far away from the black hole. Likewise, the angular momentum (or spin) can be measured from far away using
frame dragging Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses c ...
by the gravitomagnetic field, through for example the Lense–Thirring effect. When an object falls into a black hole, any information about the shape of the object or distribution of charge on it is evenly distributed along the horizon of the black hole, and is lost to outside observers. The behaviour of the horizon in this situation is a
dissipative system A dissipative system is a thermodynamically open system which is operating out of, and often far from, thermodynamic equilibrium in an environment with which it exchanges energy and matter. A tornado may be thought of as a dissipative system. Di ...
that is closely analogous to that of a conductive stretchy membrane with friction and
electrical resistance The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual paral ...
—the
membrane paradigm In black hole theory, the black hole membrane paradigm is a simplified model, useful for visualising and calculating the effects predicted by quantum mechanics for the exterior physics of black holes, without using quantum-mechanical principles or ...
. This is different from other field theories such as electromagnetism, which do not have any friction or resistivity at the microscopic level, because they are
time-reversible In mathematics and physics, time-reversibility is the property of a process whose governing rules remain unchanged when the direction of its sequence of actions is reversed. A deterministic process is time-reversible if the time-reversed process ...
. Because a black hole eventually achieves a stable state with only three parameters, there is no way to avoid losing information about the initial conditions: the gravitational and electric fields of a black hole give very little information about what went in. The information that is lost includes every quantity that cannot be measured far away from the black hole horizon, including approximately conserved
quantum number In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system. To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantu ...
s such as the total
baryon number In particle physics, the baryon number (B) is an additive quantum number of a system. It is defined as B = \frac(n_\text - n_), where is the number of quarks, and is the number of antiquarks. Baryons (three quarks) have B = +1, mesons (one q ...
and
lepton number In particle physics, lepton number (historically also called lepton charge) is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. Lepton number ...
. This behaviour is so puzzling that it has been called the
black hole information loss paradox The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from ...
.


Physical properties

The simplest static black holes have mass but neither electric charge nor angular momentum. These black holes are often referred to as Schwarzschild black holes after
Karl Schwarzschild Karl Schwarzschild (; 9 October 1873 – 11 May 1916) was a German physicist and astronomer. Schwarzschild provided the first exact solution to the Einstein field equations of general relativity, for the limited case of a single spherical non-r ...
who discovered this
solution Solution may refer to: * Solution (chemistry), a mixture where one substance is dissolved in another * Solution (equation), in mathematics ** Numerical solution, in numerical analysis, approximate solutions within specified error bounds * Solu ...
in 1916. According to Birkhoff's theorem, it is the only
vacuum solution In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or n ...
that is spherically symmetric. This means there is no observable difference at a distance between the gravitational field of such a black hole and that of any other spherical object of the same mass. The popular notion of a black hole "sucking in everything" in its surroundings is therefore correct only near a black hole's horizon; far away, the external gravitational field is identical to that of any other body of the same mass. Solutions describing more general black holes also exist. Non-rotating
charged black hole A charged black hole is a black hole that possesses electric charge. Since the electromagnetic repulsion in compressing an electrically charged mass is dramatically greater than the gravitational attraction (by about 40 orders of magnitude), it is ...
s are described by the
Reissner–Nordström metric In physics and astronomy, the Reissner–Nordström metric is a Static spacetime, static solution to the Einstein–Maxwell equations, Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, s ...
, while the Kerr metric describes a non-charged rotating black hole. The most general stationary black hole solution known is the Kerr–Newman metric, which describes a black hole with both charge and angular momentum. While the mass of a black hole can take any positive value, the charge and angular momentum are constrained by the mass. The total electric charge ''Q'' and the total angular momentum ''J'' are expected to satisfy the inequality \frac + \frac \le G M^2 for a black hole of mass ''M''. Black holes with the minimum possible mass satisfying this inequality are called extremal. Solutions of Einstein's equations that violate this inequality exist, but they do not possess an event horizon. These solutions have so-called naked singularities that can be observed from the outside, and hence are deemed ''unphysical''. The
cosmic censorship hypothesis The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity. Singularities that arise in the solutions of Einstein's equations are typical ...
rules out the formation of such singularities, when they are created through the gravitational collapse of realistic matter. This is supported by numerical simulations. Due to the relatively large strength of the
electromagnetic force In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interac ...
, black holes forming from the collapse of stars are expected to retain the nearly neutral charge of the star. Rotation, however, is expected to be a universal feature of compact astrophysical objects. The black-hole candidate binary X-ray source
GRS 1915+105 GRS 1915+105 or V1487 Aquilae is an X-ray binary star system containing a main sequence star and a black hole. Transfer of material from the star to the black hole generates a relativistic jet, making this a microquasar system. The jet ex ...
appears to have an angular momentum near the maximum allowed value. That uncharged limit is J \le \frac, allowing definition of a
dimensionless Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that align with another sy ...
spin parameter such that 0 \le \frac\le 1. Black holes are commonly classified according to their mass, independent of angular momentum, ''J''. The size of a black hole, as determined by the radius of the event horizon, or Schwarzschild radius, is proportional to the mass, ''M'', through r_\mathrm=\frac \approx 2.95\, \frac~\mathrm where ''r'' is the Schwarzschild radius and is the
mass of the Sun The solar mass () is a frequently used unit of mass in astronomy, equal to approximately . It is approximately equal to the mass of the Sun. It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies a ...
. For a black hole with nonzero spin or electric charge, the radius is smaller, until an extremal black hole could have an event horizon close to r_\mathrm=\frac.


Event horizon

The defining feature of a black hole is the appearance of an event horizon—a boundary in
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
through which matter and light can pass only inward towards the mass of the black hole. Nothing, not even light, can escape from inside the event horizon. The event horizon is referred to as such because if an event occurs within the boundary, information from that event cannot reach an outside observer, making it impossible to determine whether such an event occurred. As predicted by general relativity, the presence of a mass deforms spacetime in such a way that the paths taken by particles bend towards the mass. At the event horizon of a black hole, this deformation becomes so strong that there are no paths that lead away from the black hole. In a thought experiment, a distant observer can imagine clocks near a black hole which would appear to tick more slowly than those farther away from the black hole. This effect, known as
gravitational time dilation Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer ...
, would also cause an object falling into a black hole to appear to slow as it approaches the event horizon, taking an infinite amount of time to reach it. All processes on this object would appear to slow down, from the viewpoint of a fixed outside observer, and any light emitted by the object to appear redder and dimmer, an effect known as
gravitational redshift In physics and general relativity, gravitational redshift (known as Einstein shift in older literature) is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well lose energy. This loss of energy correspo ...
. Eventually, the falling object fades away until it can no longer be seen. Typically this process happens very rapidly with an object disappearing from view within less than a second. On the other hand, imaginary, indestructible observers falling into a black hole would not notice any of these effects as they cross the event horizon. Their own clocks appear to them to tick normally, they cross the event horizon after a finite time without noting any singular behaviour. In
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, it is impossible to determine the location of the event horizon from local observations, due to Einstein's
equivalence principle The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same t ...
. The
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
of the event horizon of a black hole at equilibrium is always spherical. For non-rotating (static) black holes the geometry of the event horizon is precisely spherical, while for rotating black holes the event horizon is oblate.


Singularity

At the centre of the unrealistically simple Schwarzschild model of a black hole is a
gravitational singularity A gravitational singularity, spacetime singularity, or simply singularity, is a theoretical condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by defini ...
a region where the spacetime curvature becomes infinite. For a non-rotating black hole, this region takes the shape of a single point; for a rotating black hole it is smeared out to form a
ring singularity A ring singularity or ringularity is the gravitational singularity of a rotating black hole, or a Kerr black hole, that is shaped like a ring. Description When a spherical non-rotating body of a critical radius collapses under its own gravitatio ...
that lies in the plane of rotation. In both cases, the singular region has zero volume. It can also be shown that the singular region contains all the mass of the black hole solution. The singular region can thus be thought of as having infinite
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
. Even though the Schwarzschild model is not valid at the singularity, observers falling into a Schwarzschild black hole (i.e., non-rotating and not charged) cannot avoid being carried into the singularity once they cross the event horizon. They can prolong the experience by accelerating away to slow their descent, but only up to a limit. When they reach the singularity, they are crushed to infinite density and their mass is added to the total of the black hole. Before that happens, they will have been torn apart by the growing
tidal force The tidal force or tide-generating force is the difference in gravitational attraction between different points in a gravitational field, causing bodies to be pulled unevenly and as a result are being stretched towards the attraction. It is the ...
s in a process sometimes referred to as
spaghettification In astrophysics, spaghettification (sometimes referred to as the noodle effect) is the vertical stretching and horizontal compression of objects into long thin shapes (rather like spaghetti) in a very strong, non- homogeneous gravitational fi ...
or the "noodle effect". In the case of a charged (Reissner–Nordström) or rotating (Kerr) black hole, it is possible to avoid the singularity. Extending these solutions as far as possible reveals the hypothetical possibility of exiting the black hole into a different spacetime with the black hole acting as a
wormhole A wormhole is a hypothetical structure that connects disparate points in spacetime. It can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are base ...
. The possibility of travelling to another universe is, however, only theoretical since any perturbation would destroy this possibility. It also appears to be possible to follow
closed timelike curve In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was first discovered by Willem Jacob van St ...
s (returning to one's own past) around the Kerr singularity, which leads to problems with causality like the
grandfather paradox A temporal paradox, time paradox, or time travel paradox, is a paradox, an apparent contradiction, or logical contradiction associated with the idea of time travel or other foreknowledge of the future. While the notion of time travel to the futu ...
. It is expected that none of these peculiar effects would survive in a proper quantum treatment of rotating and charged black holes. The appearance of singularities in general relativity signals the breakdown of the theory. This breakdown occurs where
quantum effects Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
should describe these actions, due to the extremely high density and therefore particle interactions. To date, it has not been possible to combine quantum and gravitational effects into a single theory, although there exist attempts to formulate such a theory of
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
. It is generally expected that such a theory will not feature singularities.


Photon sphere

The
photon sphere A photon sphere, or photon ring or photon circle, arises in a neighbourhood of the event horizon of a black hole where gravity is so strong that emitted photons will not just bend around the black hole but also return to the point where they we ...
is a spherical boundary where photons that move on tangents to that sphere would be trapped in a non-stable but circular orbit around the black hole. For non-rotating black holes, the photon sphere has a radius 1.5 times the Schwarzschild radius. Their orbits would be dynamically unstable, hence any small perturbation, such as a particle of infalling matter, would cause an instability that would grow over time, either setting the photon on an outward trajectory causing it to escape the black hole, or on an inward spiral where it would eventually cross the event horizon. While light can still escape from the photon sphere, any light that crosses the photon sphere on an inbound trajectory will be captured by the black hole. Hence any light that reaches an outside observer from the photon sphere must have been emitted by objects between the photon sphere and the event horizon. For a Kerr black hole the radius of the photon sphere depends on the spin parameter and on the details of the photon orbit, which can be prograde (the photon rotates in the same sense of the black hole spin) or retrograde.


Ergosphere

Rotating black holes are surrounded by a region of spacetime in which it is impossible to stand still, called the ergosphere. This is the result of a process known as
frame-dragging Frame-dragging is an effect on spacetime, predicted by Albert Einstein's General relativity, general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary Field (physics), field is one that is ...
; general relativity predicts that any rotating mass will tend to slightly "drag" along the spacetime immediately surrounding it. Any object near the rotating mass will tend to start moving in the direction of rotation. For a rotating black hole, this effect is so strong near the event horizon that an object would have to move faster than the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
in the opposite direction to just stand still. The ergosphere of a black hole is a volume bounded by the black hole's event horizon and the ''ergosurface'', which coincides with the event horizon at the poles but is at a much greater distance around the equator. Objects and radiation can escape normally from the ergosphere. Through the
Penrose process The Penrose process (also called Penrose mechanism) is theorised by Sir Roger Penrose as a means whereby energy can be extracted from a rotating black hole. The process takes advantage of the ergosphere – a region of spacetime around the black ...
, objects can emerge from the ergosphere with more energy than they entered with. The extra energy is taken from the rotational energy of the black hole. Thereby the rotation of the black hole slows down. A variation of the Penrose process in the presence of strong magnetic fields, the
Blandford–Znajek process The Blandford–Znajek process is a mechanism for the extraction of energy from a rotating black hole, introduced by Roger Blandford and Roman Znajek in 1977. This mechanism is the most preferred description of how Astrophysical jet, astrophysical ...
is considered a likely mechanism for the enormous luminosity and relativistic jets of
quasars A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
and other
active galactic nuclei An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that this luminosity is not produced by the stars. Such e ...
.


Innermost stable circular orbit (ISCO)

In
Newtonian gravity Newton's law of universal gravitation describes gravity as a force by stating that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the sq ...
,
test particle In physical theories, a test particle, or test charge, is an idealized model of an object whose physical properties (usually mass, charge, or size) are assumed to be negligible except for the property being studied, which is considered to be insuf ...
s can stably orbit at arbitrary distances from a central object. In general relativity, however, there exists an innermost stable circular orbit (often called the ISCO), for which any infinitesimal inward perturbations to a circular orbit will lead to spiraling into the black hole, and any outward perturbations will, depending on the energy, result in spiraling in, stably orbiting between apastron and periastron, or escaping to infinity. The location of the ISCO depends on the spin of the black hole, in the case of a Schwarzschild black hole (spin zero) is: r_=3 \, r_s=\frac, and decreases with increasing black hole spin for particles orbiting in the same direction as the spin.


Plunging region

The final observable region of spacetime around a black hole is called the plunging region. In this area it is no longer possible for matter to follow circular orbits or to stop a final descent into the black hole. Instead it will rapidly plunge toward the black hole close to the speed of light.


Formation and evolution

Given the bizarre character of black holes, it was long questioned whether such objects could actually exist in nature or whether they were merely pathological solutions to Einstein's equations. Einstein himself wrongly thought black holes would not form, because he held that the angular momentum of collapsing particles would stabilise their motion at some radius. This led the general relativity community to dismiss all results to the contrary for many years. However, a minority of relativists continued to contend that black holes were physical objects, and by the end of the 1960s, they had persuaded the majority of researchers in the field that there is no obstacle to the formation of an event horizon. Penrose demonstrated that once an event horizon forms, general relativity without quantum mechanics requires that a singularity will form within. Shortly afterwards, Hawking showed that many cosmological solutions that describe the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
have singularities without
scalar field In mathematics and physics, a scalar field is a function associating a single number to each point in a region of space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless) or a scalar physical ...
s or other
exotic matter There are several proposed types of exotic matter: * Hypothetical particles and states of matter that have not yet been encountered, but whose properties would be within the realm of mainstream physics if found to exist. * Several particles who ...
. The
Kerr solution The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric tensor, metric is an Exact solutions in general relativity, e ...
, the no-hair theorem, and the laws of black hole thermodynamics showed that the physical properties of black holes were simple and comprehensible, making them respectable subjects for research. Conventional black holes are formed by
gravitational collapse Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formati ...
of heavy objects such as stars, but they can also in theory be formed by other processes.


Gravitational collapse

Gravitational collapse occurs when an object's internal
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
is insufficient to resist the object's own gravity. For stars this usually occurs either because a star has too little "fuel" left to maintain its temperature through
stellar nucleosynthesis In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
, or because a star that would have been stable receives extra matter in a way that does not raise its core temperature. In either case the star's temperature is no longer high enough to prevent it from collapsing under its own weight. The collapse may be stopped by the
degeneracy pressure In astrophysics and condensed matter physics, electron degeneracy pressure is a quantum mechanical effect critical to understanding the stability of white dwarf stars and metal solids. It is a manifestation of the more general phenomenon of quan ...
of the star's constituents, allowing the condensation of matter into an exotic denser state. The result is one of the various types of
compact star In astronomy, the term compact object (or compact star) refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a ...
. Which type forms depends on the mass of the remnant of the original star left if the outer layers have been blown away (for example, in a
Type II supernova A Type II supernova or SNII (plural: ''supernovae'') results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun () to undergo this type ...
). The mass of the remnant, the collapsed object that survives the explosion, can be substantially less than that of the original star. Remnants exceeding are produced by stars that were over before the collapse. If the mass of the remnant exceeds about (the Tolman–Oppenheimer–Volkoff limit), either because the original star was very heavy or because the remnant collected additional mass through accretion of matter, even the degeneracy pressure of
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s is insufficient to stop the collapse. No known mechanism (except possibly quark degeneracy pressure) is powerful enough to stop the implosion and the object will inevitably collapse to form a black hole. The gravitational collapse of heavy stars is assumed to be responsible for the formation of
stellar mass black hole A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. They are the remnants of supernova explosions, which may be ...
s.
Star formation Star formation is the process by which dense regions within molecular clouds in interstellar space—sometimes referred to as "stellar nurseries" or "star-forming regions"—Jeans instability, collapse and form stars. As a branch of astronomy, sta ...
in the early universe may have resulted in very massive stars, which upon their collapse would have produced black holes of up to . These black holes could be the seeds of the supermassive black holes found in the centres of most galaxies. It has further been suggested that massive black holes with typical masses of ~ could have formed from the direct collapse of gas clouds in the young universe. These massive objects have been proposed as the seeds that eventually formed the earliest quasars observed already at redshift z \sim 7. Some candidates for such objects have been found in observations of the young universe. While most of the energy released during gravitational collapse is emitted very quickly, an outside observer does not actually see the end of this process. Even though the collapse takes a finite amount of time from the
reference frame In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points, defined as geometric ...
of infalling matter, a distant observer would see the infalling material slow and halt just above the event horizon, due to gravitational time dilation. Light from the collapsing material takes longer and longer to reach the observer, with the light emitted just before the event horizon forms delayed an infinite amount of time. Thus the external observer never sees the formation of the event horizon; instead, the collapsing material seems to become dimmer and increasingly red-shifted, eventually fading away.


Primordial black holes and the Big Bang

Gravitational collapse requires great density. In the current epoch of the universe these high densities are found only in stars, but in the early universe shortly after the Big Bang densities were much greater, possibly allowing for the creation of black holes. High density alone is not enough to allow black hole formation since a uniform mass distribution will not allow the mass to bunch up. In order for
primordial black holes In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly pac ...
to have formed in such a dense medium, there must have been initial density perturbations that could then grow under their own gravity. Different models for the early universe vary widely in their predictions of the scale of these fluctuations. Various models predict the creation of primordial black holes ranging in size from a
Planck mass In particle physics and physical cosmology, Planck units are a system of units of measurement defined exclusively in terms of four universal physical constants: '' c'', '' G'', '' ħ'', and ''k''B (described further below). Expressing one of ...
( m_P = \sqrt ≈ ≈ ) to hundreds of thousands of solar masses. Despite the early universe being extremely
dense Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be use ...
, it did not re-collapse into a black hole during the Big Bang, since the expansion rate was greater than the attraction. Following
inflation theory In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower ...
, general relativity predicts that the gravitational field slows the expansion of the universe.The negative pressure overcomes the positive energy density to produce a net repulsive gravitational field. Models for the gravitational collapse of objects of relatively constant size, such as
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s, do not necessarily apply in the same way to rapidly expanding space such as the Big Bang.


High-energy collisions

Gravitational collapse is not the only process that could create black holes. In principle, black holes could be formed in high-energy collisions that achieve sufficient density. As of 2002, no such events have been detected, either directly or indirectly as a deficiency of the mass balance in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
experiments. This suggests that there must be a lower limit for the mass of black holes. Theoretically, this boundary is expected to lie around the Planck mass, where quantum effects are expected to invalidate the predictions of general relativity. This would put the creation of black holes firmly out of reach of any high-energy process occurring on or near the Earth. However, certain developments in quantum gravity suggest that the minimum black hole mass could be much lower: some
braneworld Brane cosmology refers to several theories in particle physics and cosmology related to string theory, superstring theory and M-theory. Brane and bulk The central idea is that the visible, four-dimensional spacetime is restricted to a brane i ...
scenarios for example put the boundary as low as . This would make it conceivable for
micro black hole Micro black holes, also known as mini black holes and quantum mechanical black holes, are hypothetical tiny (<1 )
cosmic ray Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
s hit the Earth's atmosphere, or possibly in the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator. It was built by the CERN, European Organization for Nuclear Research (CERN) between 1998 and 2008, in collaboration with over 10,000 scientists, ...
at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Gene ...
. These theories are very speculative, and the creation of black holes in these processes is deemed unlikely by many specialists. Even if micro black holes could be formed, it is expected that they would
evaporate Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when hum ...
in about 10 seconds, posing no threat to the Earth.


Growth

Once a black hole has formed, it can continue to grow by absorbing additional
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
. Any black hole will continually absorb gas and
interstellar dust Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can ...
from its surroundings. This growth process is one possible way through which some supermassive black holes may have been formed, although the formation of supermassive black holes is still an open field of research. A similar process has been suggested for the formation of
intermediate-mass black hole An intermediate-mass black hole (IMBH) is a class of black hole with mass in the range of one hundred to one hundred thousand (102–105) solar masses: significantly higher than stellar black holes but lower than the hundred thousand to more than ...
s found in
globular cluster A globular cluster is a spheroidal conglomeration of stars that is bound together by gravity, with a higher concentration of stars towards its center. It can contain anywhere from tens of thousands to many millions of member stars, all orbiting ...
s. Black holes can also merge with other objects such as stars or even other black holes. This is thought to have been important, especially in the early growth of supermassive black holes, which could have formed from the aggregation of many smaller objects. The process has also been proposed as the origin of some intermediate-mass black holes.


Evaporation

In 1974, Hawking predicted that black holes are not entirely black but emit small amounts of thermal radiation at a temperature ''ħc''/(8''πGM'' ''k''); this effect has become known as Hawking radiation. By applying quantum field theory to a static black hole background, he determined that a black hole should emit particles that display a perfect
black body spectrum Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific continuous spect ...
. Since Hawking's publication, many others have verified the result through various approaches. If Hawking's theory of black hole radiation is correct, then black holes are expected to shrink and evaporate over time as they lose mass by the emission of photons and other particles. The temperature of this thermal spectrum (
Hawking temperature Hawking radiation is black-body radiation released outside a black hole's event horizon due to quantum effects according to a model developed by Stephen Hawking in 1974. The radiation was not predicted by previous models which assumed that once ...
) is proportional to the surface gravity of the black hole, which, for a Schwarzschild black hole, is inversely proportional to the mass. Hence, large black holes emit less radiation than small black holes. A stellar black hole of has a Hawking temperature of 62 
nanokelvin List of orders of magnitude for temperature Detailed list for 100 K to 1000 K Most ordinary human activity takes place at temperatures of this order of magnitude. Circumstances where water naturally occurs in liquid form are shown in light g ...
s. This is far less than the 2.7 K temperature of the
cosmic microwave background The cosmic microwave background (CMB, CMBR), or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dar ...
radiation. Stellar-mass or larger black holes receive more mass from the cosmic microwave background than they emit through Hawking radiation and thus will grow instead of shrinking. To have a Hawking temperature larger than 2.7 K (and be able to evaporate), a black hole would need a mass less than the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
. Such a black hole would have a diameter of less than a tenth of a millimetre. If a black hole is very small, the radiation effects are expected to become very strong. A black hole with the mass of a car would have a diameter of about 10 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/''c'' would take less than 10 seconds to evaporate completely. For such a small black hole, quantum gravity effects are expected to play an important role and could hypothetically make such a small black hole stable, although current developments in quantum gravity do not indicate this is the case. The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes. NASA's
Fermi Gamma-ray Space Telescope The Fermi Gamma-ray Space Telescope (FGST, also FGRST), formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is ...
launched in 2008 will continue the search for these flashes. If black holes evaporate via Hawking radiation, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 10 years. A supermassive black hole with a mass of will evaporate in around 2×10 years.. See in particular equation (27). During the collapse of a supercluster of galaxies, supermassive black holes are predicted to grow to perhaps . Even these would evaporate over a timescale of up to 10 years. See page 596: table1 and section "black hole decay" and previous sentence on that page.


Observational evidence

By nature, black holes do not themselves emit any electromagnetic radiation other than the hypothetical Hawking radiation, so astrophysicists searching for black holes must generally rely on indirect observations. For example, a black hole's existence can sometimes be inferred by observing its gravitational influence on its surroundings.


Direct interferometry

The
Event Horizon Telescope The Event Horizon Telescope (EHT) is a Astronomical interferometer, telescope array consisting of a global network of radio telescopes. The EHT project combines data from several very-long-baseline interferometry (VLBI) stations around Earth, wh ...
(EHT) is an active program that directly observes the immediate environment of black holes' event horizons, such as the black hole at the centre of the Milky Way. In April 2017, EHT began observing the black hole at the centre of
Messier 87 Messier 87 (also known as Virgo A or NGC 4486, generally abbreviated to M87) is a Type-cD galaxy, supergiant elliptical galaxy, elliptical galaxy in the constellation Virgo (constellation), Virgo that contains several trillion s ...
. "In all, eight radio observatories on six mountains and four continents observed the galaxy in Virgo on and off for 10 days in April 2017" to provide the data yielding the image in April 2019. After two years of data processing, EHT released its first image of a black hole, at the center of the Messier 87 galaxy. What is visible is not the black hole—which shows as black because of the loss of all light within this dark region. Instead, it is the gases at the edge of the event horizon, displayed as orange or red, that define the black hole. On 12 May 2022, the EHT released the first image of
Sagittarius A* Sagittarius A*, abbreviated as Sgr A* ( ), is the supermassive black hole at the Galactic Center of the Milky Way. Viewed from Earth, it is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south o ...
, the supermassive black hole at the centre of the Milky Way galaxy. The published image displayed the same ring-like structure and "shadow" seen in the M87* black hole. The boundary of the shadow or area of less brightness matches the predicted gravitationally lensed photon orbits. The image was created using the same techniques as for the M87 black hole. The imaging process for Sagittarius A*, which is more than a thousand times smaller and less massive than M87*, was significantly more complex because of the instability of its surroundings. The image of Sagittarius A* was partially blurred by turbulent plasma on the way to the galactic centre, an effect which prevents resolution of the image at longer wavelengths. The brightening of this material in the 'bottom' half of the processed EHT image is thought to be caused by Doppler beaming, whereby material approaching the viewer at relativistic speeds is perceived as brighter than material moving away. In the case of a black hole, this phenomenon implies that the visible material is rotating at relativistic speeds (>), the only speeds at which it is possible to centrifugally balance the immense gravitational attraction of the singularity, and thereby remain in orbit above the event horizon. This configuration of bright material implies that the EHT observed
M87* Messier 87 (also known as Virgo A or NGC 4486, generally abbreviated to M87) is a supergiant elliptical galaxy in the constellation Virgo that contains several trillion stars. One of the largest and most massive galaxies in th ...
from a perspective catching the black hole's accretion disc nearly edge-on, as the whole system rotated clockwise. The extreme gravitational lensing associated with black holes produces the illusion of a perspective that sees the accretion disc from above. In reality, most of the ring in the EHT image was created when the light emitted by the far side of the accretion disc bent around the black hole's gravity well and escaped, meaning that most of the possible perspectives on M87* can see the entire disc, even that directly behind the "shadow". In 2015, the EHT detected magnetic fields just outside the event horizon of Sagittarius A* and even discerned some of their properties. The field lines that pass through the accretion disc were a complex mixture of ordered and tangled. Theoretical studies of black holes had predicted the existence of magnetic fields. In April 2023, an image of the shadow of the Messier 87 black hole and the related high-energy jet, viewed together for the first time, was presented.


Detection of gravitational waves from merging black holes

On 14 September 2015, the
LIGO The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Prior to LIG ...
gravitational wave observatory made the first-ever successful direct observation of gravitational waves. The signal was consistent with theoretical predictions for the gravitational waves produced by the merger of two black holes: one with about 36 solar masses, and the other around 29 solar masses. This observation provides the most concrete evidence for the existence of black holes to date. For instance, the gravitational wave signal suggests that the separation of the two objects before the merger was just 350 km, or roughly four times the Schwarzschild radius corresponding to the inferred masses. The objects must therefore have been extremely compact, leaving black holes as the most plausible interpretation. More importantly, the signal observed by LIGO also included the start of the post-merger
ringdown In telephony, ringdown is a method of signaling an operator in which telephone ringing current is sent over the line to operate a lamp or cause the operation of a self-locking relay known as a ''drop''. Ringdown is used in manual operation, ...
, the signal produced as the newly formed compact object settles down to a stationary state. Arguably, the ringdown is the most direct way of observing a black hole. From the LIGO signal, it is possible to extract the frequency and damping time of the dominant mode of the ringdown. From these, it is possible to infer the mass and angular momentum of the final object, which match independent predictions from numerical simulations of the merger. The frequency and decay time of the dominant mode are determined by the geometry of the photon sphere. Hence, observation of this mode confirms the presence of a photon sphere; however, it cannot exclude possible exotic alternatives to black holes that are compact enough to have a photon sphere. The observation also provides the first observational evidence for the existence of stellar-mass black hole binaries. Furthermore, it is the first observational evidence of stellar-mass black holes weighing 25 solar masses or more. Since then, many more gravitational wave events have been observed.


Stars orbiting Sagittarius A*

The
proper motion Proper motion is the astrometric measure of changes in the apparent places of stars or other celestial objects as they move relative to the center of mass of the Solar System. It is measured relative to the distant stars or a stable referenc ...
s of stars near the centre of our own Milky Way provide strong observational evidence that these stars are orbiting a supermassive black hole. Since 1995, astronomers have tracked the motions of 90 stars orbiting an invisible object coincident with the radio source Sagittarius A*. By fitting their motions to
Keplerian orbit In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in ...
s, the astronomers were able to infer, in 1998, that a object must be contained in a volume with a radius of 0.02
light-year A light-year, alternatively spelled light year (ly or lyr), is a unit of length used to express astronomical distances and is equal to exactly , which is approximately 9.46 trillion km or 5.88 trillion mi. As defined by the International Astr ...
s to cause the motions of those stars. Since then, one of the stars—called S2—has completed a full orbit. From the orbital data, astronomers were able to refine the calculations of the mass to and a radius of less than 0.002 light-years for the object causing the orbital motion of those stars. The upper limit on the object's size is still too large to test whether it is smaller than its Schwarzschild radius. Nevertheless, these observations strongly suggest that the central object is a supermassive black hole as there are no other plausible scenarios for confining so much invisible mass into such a small volume. Additionally, there is some observational evidence that this object might possess an event horizon, a feature unique to black holes.


Accretion of matter

Due to
conservation of angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
, gas falling into the
gravitational well In classical mechanics, the gravitational potential is a scalar potential associating with each point in space the work (energy transferred) per unit mass that would be needed to move an object to that point from a fixed reference point in the co ...
created by a massive object will typically form a disk-like structure around the object. Artists' impressions such as the accompanying representation of a black hole with corona commonly depict the black hole as if it were a flat-space body hiding the part of the disk just behind it, but in reality gravitational lensing would greatly distort the image of the accretion disk. Within such a disk, friction would cause angular momentum to be transported outward, allowing matter to fall farther inward, thus releasing potential energy and increasing the temperature of the gas. section 4.1.5. When the accreting object is a neutron star or a black hole, the gas in the inner accretion disk orbits at very high speeds because of its proximity to the
compact object In astronomy, the term compact object (or compact star) refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a ...
. The resulting friction is so significant that it heats the inner disk to temperatures at which it emits vast amounts of electromagnetic radiation (mainly
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s). These bright X-ray sources may be detected by telescopes. This process of accretion is one of the most efficient energy-producing processes known. Up to 40% of the rest mass of the accreted material can be emitted as radiation. In nuclear fusion only about 0.7% of the rest mass will be emitted as energy. In many cases, accretion disks are accompanied by
relativistic jets An astrophysical jet is an astronomy, astronomical phenomenon where outflows of Ionization, ionised matter are emitted as extended beams along the rotation, axis of rotation. When this greatly accelerated matter in the beam approaches the speed of ...
that are emitted along the poles, which carry away much of the energy. The mechanism for the creation of these jets is currently not well understood, in part due to insufficient data. As such, many of the universe's more energetic phenomena have been attributed to the accretion of matter on black holes. In particular, active galactic nuclei and
quasar A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
s are believed to be the accretion disks of supermassive black holes. Similarly, X-ray binaries are generally accepted to be
binary star A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars us ...
systems in which one of the two stars is a compact object accreting matter from its companion. It has also been suggested that some
ultraluminous X-ray source In astronomy and astrophysics, an ultraluminous X-ray source (ULX) is less luminous than an active galactic nucleus but more consistently luminous than any known stellar process (over 1039 erg/s, or 1032 watts), assuming that it radiates isotropi ...
s may be the accretion disks of intermediate-mass black holes. Stars have been observed to get torn apart by tidal forces in the immediate vicinity of supermassive black holes in galaxy nuclei, in what is known as a tidal disruption event (TDE). Some of the material from the disrupted star forms an accretion disk around the black hole, which emits observable electromagnetic radiation. In November 2011 the first direct observation of a quasar accretion disk around a supermassive black hole was reported.


X-ray binaries

X-ray binaries An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelengt ...
are binary star systems that emit a majority of their radiation in the
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
part of the spectrum. These X-ray emissions are generally thought to result when one of the stars (compact object) accretes matter from another (regular) star. The presence of an ordinary star in such a system provides an opportunity for studying the central object and to determine if it might be a black hole. If such a system emits signals that can be directly traced back to the compact object, it cannot be a black hole. The absence of such a signal does, however, not exclude the possibility that the compact object is a neutron star. By studying the companion star it is often possible to obtain the orbital parameters of the system and to obtain an estimate for the mass of the compact object. If this is much larger than the Tolman–Oppenheimer–Volkoff limit (the maximum mass a star can have without collapsing) then the object cannot be a neutron star and is generally expected to be a black hole. The first strong candidate for a black hole,
Cygnus X-1 Cygnus X-1 (abbreviated Cyg X-1) is a galactic X-ray source in the constellation Cygnus and was the first such source widely accepted to be a black hole. It was discovered in 1964 during a rocket flight and is one of the ...
, was discovered in this way by
Charles Thomas Bolton Charles Thomas Bolton (April 15, 1943 – ) was an American-Canadian astronomer who was one of the first in his field to present strong evidence of the existence of a stellar-mass black hole. Biography Bolton was born in Camp Forrest, a milita ...
, Louise Webster, and
Paul Murdin Paul Geoffrey Murdin (born 5 January 1942) is a British astronomer. He identified the first clear candidate for a black hole, Cygnus X-1, with his colleague Louise Webster. He studied Mathematics and Physics at the universities of Oxford and ...
in 1972. Some doubt remained, due to the uncertainties that result from the companion star being much heavier than the candidate black hole. Currently, better candidates for black holes are found in a class of X-ray binaries called soft X-ray transients. In this class of system, the companion star is of relatively low mass allowing for more accurate estimates of the black hole mass. These systems actively emit X-rays for only several months once every 10–50 years. During the period of low X-ray emission, called quiescence, the accretion disk is extremely faint, allowing detailed observation of the companion star during this period. One of the best such candidates is
V404 Cygni V404 Cygni is a microquasar and a triple star system in the constellation of Cygnus. It contains a black hole with a mass of about and an early K giant star companion with a mass slightly smaller than the Sun, and an evolved tertia ...
.


= Quasi-periodic oscillations

= The X-ray emissions from accretion disks sometimes flicker at certain frequencies. These signals are called
quasi-periodic oscillation In X-ray astronomy, quasi-periodic oscillation (QPO) is the manner in which the X-ray light from an astronomical object flickers about certain frequencies. In these situations, the X-rays are emitted near the inner edge of an accretion disk in w ...
s and are thought to be caused by material moving along the inner edge of the accretion disk (the innermost stable circular orbit). As such their frequency is linked to the mass of the compact object. They can thus be used as an alternative way to determine the mass of candidate black holes.


Galactic nuclei

Astronomers use the term "active galaxy" to describe galaxies with unusual characteristics, such as unusual
spectral line A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission (electromagnetic radiation), emission or absorption (electromagnetic radiation), absorption of light in a narrow frequency ...
emission and very strong radio emission. Theoretical and observational studies have shown that the activity in these active galactic nuclei (AGN) may be explained by the presence of supermassive black holes, which can be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
; a disk of
interstellar gas The interstellar medium (ISM) is the matter and radiation that exists in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar spac ...
and dust called an accretion disk; and two jets perpendicular to the accretion disk. Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the
Andromeda Galaxy The Andromeda Galaxy is a barred spiral galaxy and is the nearest major galaxy to the Milky Way. It was originally named the Andromeda Nebula and is cataloged as Messier 31, M31, and NGC 224. Andromeda has a Galaxy#Isophotal diameter, D25 isop ...
, M32, M87,
NGC 3115 NGC 3115 (also called the Spindle Galaxy or Caldwell 53) is a field lenticular (S0) galaxy in the constellation Sextans. The galaxy was discovered by William Herschel on February 22, 1787. At about 32 million light-years away from Earth, it ...
,
NGC 3377 NGC 3377 is an elliptical galaxy in the constellation Leo. It is a member of the M96 Group and is about 26 Mly away, with a diameter of approximately 40 000 ly. The supermassive black hole A supermassive black hole (SMBH or sometimes SBH) ...
,
NGC 4258 Messier 106 (also known as NGC 4258) is an intermediate spiral galaxy in the constellation Canes Venatici. It was discovered by Pierre Méchain in 1781. M106 is at a distance of about 22 to 25 million light-years away from Earth. M106 contains an ...
,
NGC 4889 NGC 4889 (also known as Caldwell 35) is an E4 supergiant elliptical galaxy. It was discovered in 1785 by the British astronomer Frederick William Herschel I, who catalogued it as a bright, nebulous patch. The brightest galaxy within the northern ...
,
NGC 1277 NGC 1277 is a lenticular galaxy in the constellation of Perseus. It is a member of the Perseus Cluster of galaxies and is located approximately 73 Mpc ( megaparsecs) or 220 million light-years from the Milky Way. It has an apparent magnitude of ...
,
OJ 287 OJ 287 is a BL Lac object 4 billion light-years from Earth that has produced quasi-periodic optical outbursts going back approximately 120 years, as first apparent on photographic plates from 1891. Seen on photographic plates since at least 188 ...
,
APM 08279+5255 APM, apm, or Apm may refer to: Technology Computer technology *Active policy management, a discipline within enterprise software *Advanced Power Management, a legacy technology in personal computers *Apple Partition Map, computer disk partitio ...
and the
Sombrero Galaxy The Sombrero Galaxy (also known as Messier Object 104, M104 or NGC 4594) is a peculiar galaxy of unclear classification in the constellation borders of Virgo and Corvus, being about from the Milky Way galaxy. It is a member of the Virgo II Gr ...
. It is now widely accepted that the centre of nearly every galaxy, not just active ones, contains a supermassive black hole. The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's
bulge __NOTOC__ Bulge may refer to: Astronomy and geography *Bulge (astronomy), a tightly packed group of stars at the center of a spiral galaxy *Equatorial bulge, a bulge around the equator of a planet due to rotation *Tharsis bulge, vast volcanic pla ...
, known as the
M–sigma relation The M–sigma (or ''M''–''σ'') relation is an empirical correlation between the stellar velocity dispersion ''σ'' of a galaxy bulge and the mass M of the supermassive black hole at its center. The ''M''–''σ'' relation was first present ...
, strongly suggests a connection between the formation of the black hole and that of the galaxy itself.


Microlensing

Another way the black hole nature of an object may be tested is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitational lensing: The deformation of spacetime around a massive object causes light rays to be deflected, such as light passing through an optic
lens A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements'') ...
. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few
arcsecond A minute of arc, arcminute (abbreviated as arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of a degree. Since one degree is of a turn, or complete rotation, one arcminute is of a tu ...
s.
Microlensing Gravitational microlensing is an astronomical phenomenon caused by the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronome ...
occurs when the sources are unresolved and the observer sees a small brightening. The turn of the millennium saw the first 3 candidate detections of black holes in this way, and in January 2022, astronomers reported the first confirmed detection of a microlensing event from an isolated black hole. Another possibility for observing gravitational lensing by a black hole would be to observe stars orbiting the black hole. There are several candidates for such an observation in orbit around
Sagittarius A* Sagittarius A*, abbreviated as Sgr A* ( ), is the supermassive black hole at the Galactic Center of the Milky Way. Viewed from Earth, it is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south o ...
.


Alternatives

The evidence for stellar black holes strongly relies on the existence of an upper limit for the mass of a neutron star. The size of this limit heavily depends on the assumptions made about the properties of dense matter. New exotic
phases of matter In the outline of physical science, physical sciences, a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes ...
could push up this bound. A phase of free
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s at high density might allow the existence of dense quark stars, and some
supersymmetric Supersymmetry is a theoretical framework in physics that suggests the existence of a symmetry between particles with integer spin (''bosons'') and particles with half-integer spin (''fermions''). It proposes that for every known particle, there ...
models predict the existence of
Q star A Q-star, also known as a grey hole, is a hypothetical type of compact, heavy neutron star with an exotic state of matter. Such a star can be smaller than the progenitor star's Schwarzschild radius and have a gravitational pull so strong that so ...
s. Some extensions of the
standard model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
posit the existence of
preon In particle physics, preons are hypothetical point particles, conceived of as sub-components of quarks and leptons. The word was coined by Jogesh Pati and Abdus Salam, in 1974. Interest in preon models peaked in the 1980s but has slowed, as t ...
s as fundamental building blocks of quarks and
lepton In particle physics, a lepton is an elementary particle of half-integer spin (Spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-li ...
s, which could hypothetically form
preon star An exotic star is a hypothetical compact star composed of exotic matter (something not made of electrons, protons, neutrons, or muons), and balanced against gravitational collapse by degeneracy pressure or other quantum properties. Types of e ...
s. These hypothetical models could potentially explain a number of observations of stellar black hole candidates. However, it can be shown from arguments in general relativity that any such object will have a maximum mass. Since the average density of a black hole inside its Schwarzschild radius is inversely proportional to the square of its mass, supermassive black holes are much less dense than stellar black holes. The average density of a black hole is comparable to that of water. Consequently, the physics of matter forming a supermassive black hole is much better understood and the possible alternative explanations for supermassive black hole observations are much more mundane. For example, a supermassive black hole could be modelled by a large cluster of very dark objects. However, such alternatives are typically not stable enough to explain the supermassive black hole candidates. The evidence for the existence of stellar and supermassive black holes implies that in order for black holes not to form, general relativity must fail as a theory of gravity, perhaps due to the onset of
quantum mechanical Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
corrections. A much anticipated feature of a theory of quantum gravity is that it will not feature singularities or event horizons and thus black holes would not be real artefacts. For example, in the fuzzball model based on
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
, the individual states of a black hole solution do not generally have an event horizon or singularity, but for a classical/semiclassical observer the statistical average of such states appears just as an ordinary black hole as deduced from general relativity. A few theoretical objects have been conjectured to match observations of astronomical black hole candidates identically or near-identically, but which function via a different mechanism. These include the
gravastar In astrophysics, a gravastar (a blend word of "gravitational vacuum star") is an object hypothesized in a 2001 paper by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has the usual black hole metric outside of ...
, the
black star Black Star or Blackstar may refer to: Astronomy *Black star (semiclassical gravity), a theoretical star built using semiclassical gravity as an alternative to a black hole *Saturn, referred to as "Black Star" in ancient Judaeic belief *Black dwarf ...
, related
nestar In astrophysics, a gravastar (a blend word of "gravitational vacuum star") is an object hypothesized in a 2001 paper by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has the usual black hole metric outside of ...
and the
dark-energy star A dark-energy star is a hypothetical compact astrophysical object, which a minority of physicists think might constitute an alternative explanation for observations of astronomical black hole candidates. The concept was proposed by physicist G ...
.


Open questions


Entropy and thermodynamics

In 1971, Hawking showed under general conditionsIn particular, he assumed that all matter satisfies the
weak energy condition In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically phrased mathem ...
.
that the total area of the event horizons of any collection of classical black holes can never decrease, even if they collide and merge. This result, now known as the second law of black hole mechanics, is remarkably similar to the
second law of thermodynamics The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
, which states that the total entropy of an isolated system can never decrease. As with classical objects at
absolute zero Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The absolute zero is defined as 0 K on the Kelvin scale, equivalent to −273.15 ° ...
temperature, it was assumed that black holes had zero entropy. If this were the case, the second law of thermodynamics would be violated by entropy-laden matter entering a black hole, resulting in a decrease in the total entropy of the universe. Therefore, Bekenstein proposed that a black hole should have an entropy, and that it should be proportional to its horizon area. The link with the laws of thermodynamics was further strengthened by Hawking's discovery in 1974 that quantum field theory predicts that a black hole radiates
blackbody radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific continuous spectr ...
at a constant temperature. This seemingly causes a violation of the second law of black hole mechanics, since the radiation will carry away energy from the black hole causing it to shrink. The radiation also carries away entropy, and it can be proven under general assumptions that the sum of the entropy of the matter surrounding a black hole and one quarter of the area of the horizon as measured in Planck units is in fact always increasing. This allows the formulation of the first law of black hole mechanics as an analogue of the
first law of thermodynamics The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. For a thermodynamic process affecting a thermodynamic system without transfer of matter, the law distinguishes two ...
, with the mass acting as energy, the surface gravity as temperature and the area as entropy. One puzzling feature is that the entropy of a black hole scales with its area rather than with its volume, since entropy is normally an
extensive quantity Physical or chemical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. The terms "intensive and extensive ...
that scales linearly with the volume of the system. This odd property led
Gerard 't Hooft Gerardus "Gerard" 't Hooft (; born July 5, 1946) is a Dutch theoretical physicist and professor at Utrecht University, the Netherlands. He shared the 1999 Nobel Prize in Physics with his thesis advisor Martinus J. G. Veltman "for elucidating t ...
and
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birth anniversary was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an Americ ...
to propose the
holographic principle The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region – such as a ...
, which suggests that anything that happens in a volume of spacetime can be described by data on the boundary of that volume. Although general relativity can be used to perform a semiclassical calculation of black hole entropy, this situation is theoretically unsatisfying. In
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
, entropy is understood as counting the number of microscopic configurations of a system that have the same macroscopic qualities, such as mass, charge, pressure, etc. Without a satisfactory theory of quantum gravity, one cannot perform such a computation for black holes. Some progress has been made in various approaches to quantum gravity. In 1995,
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
and
Cumrun Vafa Cumrun Vafa (, ; born 1 August 1960) is an Iranian-American theoretical physicist and the Hollis Professor of Mathematicks and Natural Philosophy at Harvard University. Early life and education Cumrun Vafa was born in Tehran, Iran on 1 August 1 ...
showed that counting the microstates of a specific supersymmetric black hole in string theory reproduced the Bekenstein–Hawking entropy. Since then, similar results have been reported for different black holes both in string theory and in other approaches to quantum gravity like
loop quantum gravity Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based direc ...
.


Information loss paradox

Because a black hole has only a few internal parameters, most of the information about the matter that went into forming the black hole is lost. Regardless of the type of matter which goes into a black hole, it appears that only information concerning the total mass, charge, and angular momentum are conserved. As long as black holes were thought to persist forever this information loss is not that problematic, as the information can be thought of as existing inside the black hole, inaccessible from the outside, but represented on the event horizon in accordance with the holographic principle. However, black holes slowly evaporate by emitting Hawking radiation. This radiation does not appear to carry any additional information about the matter that formed the black hole, meaning that this information appears to be gone forever. The question whether information is truly lost in black holes (the
black hole information paradox The black hole information paradox is a paradox that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from ...
) has divided the theoretical physics community. In quantum mechanics, loss of information corresponds to the violation of a property called
unitarity In quantum physics, unitarity is (or a unitary process has) the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom o ...
, and it has been argued that loss of unitarity would also imply violation of conservation of energy, though this has also been disputed. Over recent years evidence has been building that indeed information and unitarity are preserved in a full quantum gravitational treatment of the problem. One attempt to resolve the black hole information paradox is known as
black hole complementarity Black hole complementarity is a conjectured solution to the black hole information paradox, proposed by Leonard Susskind, Lárus Thorlacius, John Uglum, and Gerard 't Hooft. Overview Ever since Stephen Hawking suggested information is lost in an ...
. In 2012, the "
firewall paradox A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quantum, quanta at (or near) the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Do ...
" was introduced with the goal of demonstrating that black hole complementarity fails to solve the information paradox. According to
quantum field theory in curved spacetime In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed ...
, a single emission of Hawking radiation involves two mutually entangled particles. The outgoing particle escapes and is emitted as a quantum of Hawking radiation; the infalling particle is swallowed by the black hole. Assume a black hole formed a finite time in the past and will fully evaporate away in some finite time in the future. Then, it will emit only a finite amount of information encoded within its Hawking radiation. According to research by physicists like Don Page and Leonard Susskind, there will eventually be a time by which an outgoing particle must be entangled with all the Hawking radiation the black hole has previously emitted. This seemingly creates a paradox: a principle called "
monogamy of entanglement In quantum physics, monogamy is the property of quantum entanglement that restrict entanglement from being freely shared between arbitrarily many parties. In order for two qubits ''A'' and ''B'' to be maximally entangled, they must not be entangl ...
" requires that, like any quantum system, the outgoing particle cannot be fully entangled with two other systems at the same time; yet here the outgoing particle appears to be entangled both with the infalling particle and, independently, with past Hawking radiation. In order to resolve this contradiction, physicists may eventually be forced to give up one of three time-tested principles: Einstein's equivalence principle, unitarity, or local quantum field theory. One possible solution, which violates the equivalence principle, is that a "firewall" destroys incoming particles at the event horizon. In general, which—if any—of these assumptions should be abandoned remains a topic of debate.


In science fiction

Christopher Nolan's 2014 science fiction epic '' Interstellar'' features a black hole known as Gargantua, which is the central object of a planetary system in a distant galaxy. Humanity accessed this system via a
wormhole A wormhole is a hypothetical structure that connects disparate points in spacetime. It can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are base ...
in the outer
solar system The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, near
Saturn Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 tim ...
.


See also

* Black brane or
Black string In general relativity, a black brane is a solution of the Einstein field equations that generalizes a black hole solution but it is also extended—and translationally symmetric—in additional spatial dimensions. That type of solution would ...
*
Black Hole Initiative The Black Hole Initiative (BHI) is an interdisciplinary center at Harvard University that includes the fields of astronomy, physics, and philosophy, and is claimed to be the first center in the world to focus on the study of black holes. Princip ...
*
Black hole starship In astronautics, a black hole starship is the theoretical concept of a starship capable of interstellar travel using a black hole as an energy source for spacecraft propulsion. The concept was first discussed in science fiction, notably in the book ...
*
Black holes in fiction Black holes, objects whose gravity is so strong that nothing—including light—can escape them, have been depicted in fiction since at least the pulp era of science fiction, before the term ''black hole'' was coined. A common portrayal at th ...
*
Blanet A blanet is a member of a hypothetical class of exoplanets that directly orbit black holes. Blanets are fundamentally similar to other planets; they have enough mass to be rounded by their own gravity, but are not massive enough to start thermon ...
*
BTZ black hole The BTZ black hole, named after Máximo Bañados, Claudio Teitelboim, and Jorge Zanelli, is a black hole solution for (2+1)-dimensional topological gravity with a negative cosmological constant. History In 1992, Bañados, Teitelboim, and Zane ...
*
Dark star (dark matter) A dark star is a hypothetical type of star that may have existed early in the universe before conventional stars were able to form and thrive. Properties The dark stars would be composed mostly of normal matter, like modern stars, but a high ...
*
Golden binary In gravitational wave astronomy, a golden binary is a binary black hole collision event whose inspiral and ringdown phases have been measured accurately enough to provide separate measurements of the initial and final black hole masses. Testing ...
* Hypothetical black hole (disambiguation) *
Kugelblitz (astrophysics) A kugelblitz () is a theoretical astrophysical object predicted by general relativity. It is a concentration of heat, light or radiation so intense that its energy forms an event horizon and becomes self-trapped. In other words, if enough radia ...
*
List of black holes This list of black holes (and stars considered probable candidates) is organized by mass (including black holes of undetermined mass); some items in this list are Galaxy, galaxies or star clusters that are believed to be organized around a black ...
*
List of nearest black holes This is a list of known black holes that are close to the Solar System. It is thought that most black holes are solitary, but black holes in binary or larger systems are much easier to detect. Solitary black holes can generally only be detected b ...
*
Outline of black holes The following outline is provided as an overview of and topical guide to black holes: Black hole – mathematically defined region of spacetime exhibiting such a strong gravitational pull that no particle or electromagnetic radiation can esc ...
*
Planck star In loop quantum gravity theory, a Planck star is a hypothetical astronomical object, theorized as a compact, exotic star, that exists within a black hole's event horizon, created when the energy density of a collapsing star reaches the Planck e ...
* Sonic black hole * Susskind-Hawking battle *
Timeline of black hole physics Timeline of black hole physics Pre-20th century * 1640 — Ismaël Bullialdus suggests an inverse-square gravitational force law * 1676 — Ole Rømer demonstrates that light has a finite speed * 1684 — Isaac Newton writes do ...
*
Virtual black hole In quantum gravity, a virtual black hole is a hypothetical micro black hole that exists temporarily as a result of a quantum fluctuation of spacetime. It is an example of quantum foam and is the gravitational analog of the virtual electron–po ...
*
White hole In general relativity, a white hole is a hypothetical region of spacetime and Gravitational singularity, singularity that cannot be entered from the outside, although energy, matter, light and information can escape from it. In this sense, it is ...


Notes


References


Sources

* , the lecture notes on which the book was based are available for free from Sean Carroll'
website
* * * * *


Further reading


Popular reading

* * * * * * * * *


University textbooks and monographs

* * * * * * * *


Review papers

* Lecture notes from 2005
SLAC SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a federally funded research and development center in Menlo Park, California, United States. Founded in 1962, the laboratory is now sponsored ...
Summer Institute. * * *


External links

* * ''Stanford Encyclopedia of Philosophy">WP:LINKFARM--> * * ''Stanford Encyclopedia of Philosophy'':
Singularities and Black Holes
by Erik Curiel and Peter Bokulich.

– Interactive multimedia Web site about the physics and astronomy of black holes from the Space Telescope Science Institute (HubbleSite) * ESA'
Black Hole Visualization







Videos


16-year-long study tracks stars orbiting Sagittarius A*

Movie of Black Hole Candidate from Max Planck Institute
*
Computer visualisation of the signal detected by LIGO

Two Black Holes Merge into One (based upon the signal GW150914)
{{Authority control Articles containing video clips Concepts in astronomy Galaxies Theory of relativity Gravitational singularities