HOME

TheInfoList



OR:

In a
dynamical system In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models ...
, bistability means the system has two stable equilibrium states. A bistable structure can be resting in either of two states. An example of a mechanical device which is bistable is a
light switch In electrical wiring, a light switch is a switch most commonly used to operate electric lights, permanently connected equipment, or AC power plugs and sockets, electrical outlets. Portable lamps such as table lamps may have a light switch mounte ...
. The switch lever is designed to rest in the "on" or "off" position, but not between the two. Bistable behavior can occur in mechanical linkages, electronic circuits, nonlinear optical systems, chemical reactions, and physiological and biological systems. In a
conservative force In physics, a conservative force is a force with the property that the total work done by the force in moving a particle between two points is independent of the path taken. Equivalently, if a particle travels in a closed loop, the total work don ...
field, bistability stems from the fact that the
potential energy In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity ...
has two
local minima In mathematical analysis, the maximum and minimum of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum, they may be defined either within a given range (the ''local'' or ''relative' ...
, which are the stable equilibrium points. These rest states need not have equal potential energy. By mathematical arguments, a
local maximum In mathematical analysis, the maximum and minimum of a function (mathematics), function are, respectively, the greatest and least value taken by the function. Known generically as extremum, they may be defined either within a given Interval (ma ...
, an unstable equilibrium point, must lie between the two minima. At rest, a particle will be in one of the minimum equilibrium positions, because that corresponds to the state of lowest energy. The maximum can be visualized as a barrier between them. A system can transition from one state of minimal energy to the other if it is given enough activation energy to penetrate the barrier (compare
activation energy In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. The activation energy (''E''a) of a reaction is measured in kilojoules per mole (k ...
and
Arrhenius equation In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 188 ...
for the chemical case). After the barrier has been reached, assuming the system has
damping In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include ...
, it will relax into the other minimum state in a time called the
relaxation time Relaxation stands quite generally for a release of tension, a return to equilibrium. In the sciences, the term is used in the following ways: * Relaxation (physics), and more in particular: ** Relaxation (NMR), processes by which nuclear magneti ...
. Bistability is widely used in
digital electronics Digital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. It deals with the relationship between Binary number, binary inputs and outputs by passing electrical s ...
devices to store
binary Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two values (0 and 1) for each digit * Binary function, a function that takes two arguments * Binary operation, a mathematical op ...
data. It is the essential characteristic of the flip-flop, a circuit which is a fundamental building block of
computer A computer is a machine that can be Computer programming, programmed to automatically Execution (computing), carry out sequences of arithmetic or logical operations (''computation''). Modern digital electronic computers can perform generic set ...
s and some types of
semiconductor memory Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a si ...
. A bistable device can store one
bit The bit is the most basic unit of information in computing and digital communication. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented as ...
of binary data, with one state representing a "0" and the other state a "1". It is also used in relaxation oscillators,
multivibrator A multivibrator is an electronic circuit used to implement a variety of simple two-state devices such as relaxation oscillators, timers, flip-flop (electronics), latches and flip-flops. The first multivibrator circuit, the astable multivibrator el ...
s, and the
Schmitt trigger In electronics, a Schmitt trigger is a comparator circuit with hysteresis implemented by applying positive feedback to the noninverting input of a comparator or differential amplifier. It is an passivity (engineering), active circuit which con ...
.
Optical bistability Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
is an attribute of certain optical devices where two resonant transmissions states are possible and stable, dependent on the input. Bistability can also arise in biochemical systems, where it creates digital, switch-like outputs from the constituent chemical concentrations and activities. It is often associated with
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
in such systems.


Mathematical modelling

In the mathematical language of dynamic systems analysis, one of the simplest bistable systems is : \frac = y (1-y^2). This system describes a ball rolling down a curve with shape \frac - \frac, and has three equilibrium points: y = 1 , y = 0 , and y = -1. The middle point y=0 is marginally stable ( y = 0 is stable but y \approx 0 will not converge to y = 0 ), while the other two points are stable. The direction of change of y(t) over time depends on the initial condition y(0). If the initial condition is positive (y(0)>0), then the solution y(t) approaches 1 over time, but if the initial condition is negative (y(0)< 0), then y(t) approaches −1 over time. Thus, the dynamics are "bistable". The final state of the system can be either y = 1 or y = -1 , depending on the initial conditions. For detailed techniques of mathematical modelling of bistability, see the tutorial by Chong et al. (2015) http://www.mssanz.org.au/modsim2015/C2/chong.pdf The tutorial provides a simple example illustration of bistability using a synthetic toggle switch proposed in . The tutorial also uses the dynamical system software XPPAUT http://www.math.pitt.edu/~bard/xpp/xpp.html to show practically how to see bistability captured by a saddle-node bifurcation diagram and the hysteresis behaviours when the bifurcation parameter is increased or decreased slowly over the tipping points and a protein gets turned 'On' or turned 'Off'. The appearance of a bistable region can be understood for the model system \frac = y (r-y^2) which undergoes a supercritical
pitchfork bifurcation In bifurcation theory, a field within mathematics, a pitchfork bifurcation is a particular type of local bifurcation theory, bifurcation where the system transitions from one fixed point to three fixed points. Pitchfork bifurcations, like Hopf bif ...
with bifurcation parameter r .


In biological and chemical systems

Bistability is key for understanding basic phenomena of cellular functioning, such as decision-making processes in
cell cycle The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
progression,
cellular differentiation Cellular differentiation is the process in which a stem cell changes from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellula ...
, and
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
. It is also involved in loss of cellular homeostasis associated with early events in
cancer Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
onset and in
prion A prion () is a Proteinopathy, misfolded protein that induces misfolding in normal variants of the same protein, leading to cellular death. Prions are responsible for prion diseases, known as transmissible spongiform encephalopathy (TSEs), w ...
diseases as well as in the origin of new species (
speciation Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within ...
). Bistability can be generated by a positive feedback loop with an ultrasensitive regulatory step. Positive feedback loops, such as the simple X activates Y and Y activates X motif, essentially link output signals to their input signals and have been noted to be an important regulatory motif in cellular signal transduction because positive feedback loops can create switches with an all-or-nothing decision.O. Brandman, J. E. Ferrell Jr., R. Li, T. Meyer, Science 310, 496 (2005). Studies have shown that numerous biological systems, such as ''Xenopus'' oocyte maturation, mammalian calcium signal transduction, and polarity in budding yeast, incorporate multiple positive feedback loops with different time scales (slow and fast). Having multiple linked positive feedback loops with different time scales ("dual-time switches") allows for (a) increased regulation: two switches that have independent changeable activation and deactivation times; and (b) noise filtering. Bistability can also arise in a biochemical system only for a particular range of parameter values, where the parameter can often be interpreted as the strength of the feedback. In several typical examples, the system has only one stable fixed point at low values of the parameter. A saddle-node bifurcation gives rise to a pair of new fixed points emerging, one stable and the other unstable, at a critical value of the parameter. The unstable solution can then form another saddle-node bifurcation with the initial stable solution at a higher value of the parameter, leaving only the higher fixed solution. Thus, at values of the parameter between the two critical values, the system has two stable solutions. An example of a dynamical system that demonstrates similar features is : \frac = r + \frac - x where x is the output, and r is the parameter, acting as the input. Bistability can be modified to be more robust and to tolerate significant changes in concentrations of reactants, while still maintaining its "switch-like" character. Feedback on both the activator of a system and inhibitor make the system able to tolerate a wide range of concentrations. An example of this in cell biology is that activated CDK1 (Cyclin Dependent Kinase 1) activates its activator Cdc25 while at the same time inactivating its inactivator, Wee1, thus allowing for progression of a cell into mitosis. Without this double feedback, the system would still be bistable, but would not be able to tolerate such a wide range of concentrations. Bistability has also been described in the embryonic development of ''Drosophila melanogaster'' (the fruit fly). Examples are anterior-posterior and dorso-ventral axis formation and eye development. A prime example of bistability in biological systems is that of
Sonic hedgehog Sonic hedgehog protein (SHH) is a major signaling molecule of embryonic development in humans and animals, encoded by the ''SHH'' gene. This signaling molecule is key in regulating embryonic morphogenesis in all animals. SHH controls organoge ...
(Shh), a secreted signaling molecule, which plays a critical role in development. Shh functions in diverse processes in development, including patterning limb bud tissue differentiation. The Shh signaling network behaves as a bistable switch, allowing the cell to abruptly switch states at precise Shh concentrations. ''gli1'' and ''gli2'' transcription is activated by Shh, and their gene products act as transcriptional activators for their own expression and for targets downstream of Shh signaling.Lai, K., M.J. Robertson, and D.V. Schaffer, The sonic hedgehog signaling system as a bistable genetic switch. Biophys J, 2004. 86(5): pp. 2748–57. Simultaneously, the Shh signaling network is controlled by a
negative feedback Negative feedback (or balancing feedback) occurs when some function (Mathematics), function of the output of a system, process, or mechanism is feedback, fed back in a manner that tends to reduce the fluctuations in the output, whether caused ...
loop wherein the Gli transcription factors activate the enhanced transcription of a repressor (Ptc). This signaling network illustrates the simultaneous positive and negative feedback loops whose exquisite sensitivity helps create a bistable switch. Bistability can only arise in biological and chemical systems if three necessary conditions are fulfilled: positive
feedback Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause and effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handle ...
, a mechanism to filter out small stimuli and a mechanism to prevent increase without bound. Bistable chemical systems have been studied extensively to analyze relaxation kinetics,
non-equilibrium thermodynamics Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities (non-equilibrium state variables) that represent an ex ...
,
stochastic resonance Stochastic resonance (SR) is a behavior of non-linear systems where random (stochastic) fluctuations in the micro state cause deterministic changes in the macro state. This occurs when the non-linear nature of the system amplifies certain (reso ...
, as well as
climate change Present-day climate change includes both global warming—the ongoing increase in Global surface temperature, global average temperature—and its wider effects on Earth's climate system. Climate variability and change, Climate change in ...
. In bistable spatially extended systems the onset of local correlations and propagation of traveling waves have been analyzed. Bistability is often accompanied by
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
. On a population level, if many realisations of a bistable system are considered (e.g. many bistable cells (
speciation Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within ...
)), one typically observes
bimodal distribution In statistics, a multimodal distribution is a probability distribution with more than one mode (i.e., more than one local peak of the distribution). These appear as distinct peaks (local maxima) in the probability density function, as shown ...
s. In an ensemble average over the population, the result may simply look like a smooth transition, thus showing the value of single-cell resolution. A specific type of instability is known as ''modehopping'', which is bi-stability in the frequency space. Here trajectories can shoot between two stable limit cycles, and thus show similar characteristics as normal bi-stability when measured inside a Poincare section.


In mechanical systems

Bistability as applied in the design of mechanical systems is more commonly said to be "over centre"—that is, work is done on the system to move it just past the peak, at which point the mechanism goes "over centre" to its secondary stable position. The result is a toggle-type action- work applied to the system below a threshold sufficient to send it 'over center' results in no change to the mechanism's state. Springs are a common method of achieving an "over centre" action. A spring attached to a simple two position ratchet-type mechanism can create a button or plunger that is clicked or toggled between two mechanical states. Many ballpoint and rollerball retractable pens employ this type of bistable mechanism. An even more common example of an over-center device is an ordinary electric wall switch. These switches are often designed to snap firmly into the "on" or "off" position once the toggle handle has been moved a certain distance past the center-point. A ratchet-and-pawl is an elaboration—a multi-stable "over center" system used to create irreversible motion. The pawl goes over center as it is turned in the forward direction. In this case, "over center" refers to the ratchet being stable and "locked" in a given position until clicked forward again; it has nothing to do with the ratchet being unable to turn in the reverse direction.


Gallery

File:Żelazo na szczury, kuny, dziki - Piłka - 003408n.jpg, An animal foothold trap File:Slap bracelet wiki loves earth logo.jpg, A slap bracelet File:Mechanischer Schalter (Schwarz).jpg, A toggle switch File:BB clip.jpg, A snapclip File:Two mouse traps.jpg, Mouse traps File:Iver Johnson Safety Hammer grip.jpg, Safety hammer of a revolver File:オレンズ(0.5と0.3).jpg, Retractable pens


See also

*
Multistability In a dynamical system, multistability is the property of having multiple Stability theory, stable equilibrium points in the vector space spanned by the states in the system. By mathematical necessity, there must also be unstable equilibrium points ...
– the generalized case of more than two stable points * In
psychology Psychology is the scientific study of mind and behavior. Its subject matter includes the behavior of humans and nonhumans, both consciousness, conscious and Unconscious mind, unconscious phenomena, and mental processes such as thoughts, feel ...
*
ferroelectric In physics and materials science, ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoel ...
,
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
,
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
, bistable perception *
Schmitt trigger In electronics, a Schmitt trigger is a comparator circuit with hysteresis implemented by applying positive feedback to the noninverting input of a comparator or differential amplifier. It is an passivity (engineering), active circuit which con ...
* strong Allee effect *
Interferometric modulator display Interferometric modulator display (IMOD, trademarked mirasol) is a technology used in electronic visual displays that can create various colors via interference of reflected light. The color is selected with an electrically switched light modulator ...
, a bistable reflective display technology found in mirasol displays by
Qualcomm Qualcomm Incorporated () is an American multinational corporation headquartered in San Diego, California, and Delaware General Corporation Law, incorporated in Delaware. It creates semiconductors, software and services related to wireless techn ...


References

{{reflist


External links


BiStable Reed Sensor
Digital electronics 2 (number) es:Biestable