Bioremediate
   HOME

TheInfoList



OR:

Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi in
mycoremediation Mycoremediation (from ancient Greek (), meaning "fungus", and the suffix , in Latin meaning 'restoring balance') is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the environment. Fungi have been pro ...
, and plants in phytoremediation), living or dead, is employed for removing environmental pollutants from air, water, soil, fuel gasses, industrial effluents etc., in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physicochemical treatment methods bioremediation may offer advantages as it aims to be sustainable, eco-friendly, cheap, and scalable. This technology is rarely implemented however because it is slow or inefficient. Most bioremediation is inadvertent, involving native organisms. Research on bioremediation is heavily focused on stimulating the process by inoculation of a polluted site with organisms or supplying nutrients to promote their growth.
Environmental remediation Environmental remediation is the cleanup of hazardous substances dealing with the removal, treatment and containment of pollution or contaminants from Natural environment, environmental media such as soil, groundwater, sediment. Remediation may be ...
is an alternative to bioremediation. While organic pollutants are susceptible to
biodegradation Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegrada ...
, heavy metals cannot be degraded, but rather oxidized or reduced. Typical bioremediations involves oxidations. Oxidations enhance the water-solubility of organic compounds and their susceptibility to further degradation by further oxidation and hydrolysis. Ultimately biodegradation converts hydrocarbons to
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
and water. For heavy metals, bioremediation offers few solutions. Metal-containing pollutant can be removed, at least partially, with varying bioremediation techniques. The main challenge to bioremediations is rate: the processes are slow. Bioremediation techniques can be classified as (i) ''
in situ is a Latin phrase meaning 'in place' or 'on site', derived from ' ('in') and ' ( ablative of ''situs'', ). The term typically refers to the examination or occurrence of a process within its original context, without relocation. The term is use ...
'' techniques, which treat polluted sites directly, vs (ii) ''ex situ'' techniques which are applied to excavated materials. In both these approaches, additional nutrients, vitamins, minerals, and pH buffers are added to enhance the growth and metabolism of the microorganisms. In some cases, specialized microbial cultures are added ( biostimulation). Some examples of bioremediation related technologies are phytoremediation, bioventing, bioattenuation, biosparging,
composting Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical, and biological properties. It is commonly prepared by Decomposition, decomposing plant and food waste, recycling organic materials, and man ...
(biopiles and windrows), and landfarming. Other remediation techniques include thermal desorption,
vitrification Vitrification (, via French ') is the full or partial transformation of a substance into a glass, that is to say, a non- crystalline or amorphous solid. Glasses differ from liquids structurally and glasses possess a higher degree of connectivity ...
,
air stripping Air stripping is the transferring of volatile components of a liquid into an air stream. It is an environmental engineering technology used for the purification of groundwaters and wastewaters containing volatile compounds. Volatile compounds ha ...
,
bioleaching Bioleaching is the extraction or liberation of metals from their ores through the use of living organisms. Bioleaching is one of several applications within biohydrometallurgy and several methods are used to treat ores or concentrates containing ...
, rhizofiltration, and soil washing. Biological treatment, bioremediation, is a similar approach used to treat wastes including wastewater, industrial waste and solid waste. The end goal of bioremediation is to remove harmful compounds to improve soil and water quality.


''In situ'' techniques


Bioventing

Bioventing is a process that increases the oxygen or air flow into the unsaturated zone of the soil, this in turn increases the rate of natural ''in situ'' degradation of the targeted hydrocarbon contaminant. Bioventing, an aerobic bioremediation, is the most common form of oxidative bioremediation process where oxygen is provided as the electron acceptor for oxidation of
petroleum Petroleum, also known as crude oil or simply oil, is a naturally occurring, yellowish-black liquid chemical mixture found in geological formations, consisting mainly of hydrocarbons. The term ''petroleum'' refers both to naturally occurring un ...
, polyaromatic hydrocarbons (PAHs),
phenols In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups (− O H) bonded directly to an aromatic hydrocarbon group. The simplest is phenol, . Phenolic compounds ar ...
, and other reduced pollutants. Oxygen is generally the preferred electron acceptor because of the higher energy yield and because oxygen is required for some enzyme systems to initiate the degradation process. Microorganisms can degrade a wide variety of hydrocarbons, including components of gasoline, kerosene, diesel, and jet fuel. Under ideal aerobic conditions, the biodegradation rates of the low- to moderate-weight
aliphatic In organic chemistry, hydrocarbons ( compounds composed solely of carbon and hydrogen) are divided into two classes: aromatic compounds and aliphatic compounds (; G. ''aleiphar'', fat, oil). Aliphatic compounds can be saturated (in which all ...
, alicyclic, and
aromatic In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated system, conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected from conjugati ...
compounds can be very high. As molecular weight of the compound increases, the resistance to biodegradation increases simultaneously. This results in higher contaminated volatile compounds due to their high molecular weight and an increased difficulty to remove from the environment. Most bioremediation processes involve oxidation-reduction reactions where either an electron acceptor (commonly oxygen) is added to stimulate oxidation of a reduced pollutant (e.g. hydrocarbons) or an electron donor (commonly an organic substrate) is added to reduce oxidized pollutants (nitrate,
perchlorate A perchlorate is a chemical compound containing the perchlorate ion, , the conjugate base of perchloric acid (ionic perchlorate). As counterions, there can be metal cations, quaternary ammonium cations or other ions, for example, nitronium cat ...
, oxidized metals, chlorinated solvents, explosives and propellants). In both these approaches, additional nutrients, vitamins, minerals, and pH buffers may be added to optimize conditions for the microorganisms. In some cases, specialized microbial cultures are added (
bioaugmentation Biological augmentation is the addition of archaea or bacterial cultures required to speed up the rate of degradation of a contaminant. Organisms that originate from contaminated areas may already be able to break down waste, but perhaps ineffici ...
) to further enhance biodegradation. Approaches for oxygen addition below the water table include recirculating aerated water through the treatment zone, addition of pure oxygen or peroxides, and
air sparging Air sparging, also known as ''in situ'' air stripping and ''in situ'' volatilization is an ''in situ'' remediation technique, used for the treatment of saturated soils and groundwater contaminated by volatile organic compounds (VOCs) like petroleum ...
. Recirculation systems typically consist of a combination of injection wells or galleries and one or more recovery wells where the extracted groundwater is treated, oxygenated, amended with nutrients and re-injected. However, the amount of oxygen that can be provided by this method is limited by the low solubility of oxygen in water (8 to 10 mg/L for water in equilibrium with air at typical temperatures). Greater amounts of oxygen can be provided by contacting the water with pure oxygen or addition of
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...
(H2O2) to the water. In some cases, slurries of solid calcium or magnesium peroxide are injected under pressure through soil borings. These solid peroxides react with water releasing H2O2 which then decomposes releasing oxygen. Air sparging involves the injection of air under pressure below the water table. The air injection pressure must be great enough to overcome the hydrostatic pressure of the water and resistance to air flow through the soil.


Biostimulation

Bioremediation can be carried out by bacteria that are naturally present. In biostimulation, the population of these helpful bacteria can be increased by adding nutrients. Bacteria can in principle be used to degrade hydrocarbons. Specific to marine oil spills, nitrogen and phosphorus have been key nutrients in biodegradation. The bioremediation of hydrocarbons suffers from low rates. Bioremediation can involve the action of
microbial consortium A microbial consortium or microbial community, is two or more bacterial or microbial groups living symbiotically. Consortiums can be endosymbiotic or ectosymbiotic, or occasionally may be both. The protist '' Mixotricha paradoxa'', itself an end ...
. Within the consortium, the product of one species could be the substrate for another species. Anaerobic bioremediation can in principle be employed to treat a range of oxidized contaminants including chlorinated
ethylene Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon–carbon bond, carbon–carbon doub ...
s ( PCE, TCE, DCE, VC), chlorinated
ethane Ethane ( , ) is a naturally occurring Organic compound, organic chemical compound with chemical formula . At standard temperature and pressure, ethane is a colorless, odorless gas. Like many hydrocarbons, ethane is List of purification methods ...
s ( TCA, DCA), chloromethanes ( CT, CF), chlorinated cyclic hydrocarbons, various energetics (e.g.,
perchlorate A perchlorate is a chemical compound containing the perchlorate ion, , the conjugate base of perchloric acid (ionic perchlorate). As counterions, there can be metal cations, quaternary ammonium cations or other ions, for example, nitronium cat ...
,
RDX RDX (Research Department Explosive or Royal Demolition Explosive) or hexogen, among other names, is an organic compound with the formula (CH2N2O2)3. It is white, odorless, and tasteless, widely used as an explosive. Chemically, it is classified ...
, TNT), and
nitrate Nitrate is a polyatomic ion with the chemical formula . salt (chemistry), Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are solubility, soluble in wa ...
. This process involves the addition of an electron donor to: 1) deplete background electron acceptors including oxygen, nitrate, oxidized iron and manganese and sulfate; and 2) stimulate the biological and/or chemical reduction of the oxidized pollutants. The choice of substrate and the method of injection depend on the contaminant type and distribution in the aquifer, hydrogeology, and remediation objectives. Substrate can be added using conventional well installations, by direct-push technology, or by excavation and backfill such as permeable reactive barriers (PRB) or biowalls. Slow-release products composed of edible oils or solid substrates tend to stay in place for an extended treatment period. Soluble substrates or soluble fermentation products of slow-release substrates can potentially migrate via advection and diffusion, providing broader but shorter-lived treatment zones. The added organic substrates are first fermented to hydrogen (H2) and volatile fatty acids (VFAs). The VFAs, including acetate, lactate, propionate and butyrate, provide carbon and energy for bacterial metabolism.


Bioattenuation

During bioattenuation, biodegradation occurs naturally with the addition of nutrients or bacteria. The indigenous microbes present will determine the metabolic activity and act as a natural attenuation. While there is no anthropogenic involvement in bioattenuation, the contaminated site must still be monitored.


Biosparging

Biosparging is the process of groundwater remediation as oxygen, and possible nutrients, is injected. When oxygen is injected, indigenous bacteria are stimulated to increase rate of degradation. However, biosparging focuses on saturated contaminated zones, specifically related to ground water remediation. UNICEF, power producers, bulk water suppliers, and local governments are early adopters of low cost bioremediation, such as aerobic bacteria tablets which are simply dropped into water.


''Ex situ'' techniques


Biopiles

Biopiles, similar to bioventing, are used to remove petroleum pollutants by introducing aerobic hydrocarbons to contaminated soils. However, the soil is excavated and piled with an aeration system. This aeration system enhances microbial activity by introducing oxygen under positive pressure or removes oxygen under negative pressure.


Windrows

Windrow systems are similar to compost techniques where soil is periodically turned in order to enhance aeration. This periodic turning also allows contaminants present in the soil to be uniformly distributed which accelerates the process of bioremediation.


Landfarming

Landfarming, or land treatment, is a method commonly used for sludge spills. This method disperses contaminated soil and aerates the soil by cyclically rotating. This process is an above land application and contaminated soils are required to be shallow in order for microbial activity to be stimulated. However, if the contamination is deeper than 5 feet, then the soil is required to be excavated to above ground. While it is an ''ex situ'' technique, it can also be considered an ''in situ'' technique as Landfarming can be performed at the site of contamination.


''In situ'' vs. ''Ex situ''

''Ex situ'' techniques are often more expensive because of excavation and transportation costs to the treatment facility, while i''n situ'' techniques are performed at the site of contamination so they only have installation costs. While there is less cost there is also less of an ability to determine the scale and spread of the pollutant. The pollutant ultimately determines which bioremediation method to use. The depth and spread of the pollutantare other important factors.


Heavy metals

Heavy metals are introduced into the environment by both anthropogenic activities and natural factors. Anthropogenic activities include industrial emissions, electronic waste, and mining. Natural factors include mineral weathering, soil erosion, and forest fires. Heavy metals including cadmium, chromium, lead and uranium are unlike organic compounds and cannot be biodegraded. However, bioremediation processes can potentially be used to minimize the mobility of these material in the subsurface, lowering the potential for human and environmental exposure. Heavy metals from these factors are predominantly present in water sources due to runoff where it is uptake by marine fauna and flora.
Hexavalent chromium Hexavalent chromium (chromium(VI), Cr(VI), chromium 6) is any chemical compound that contains the element chromium in the +6 oxidation state (thus hexavalent). It has been identified as carcinogenic, which is of concern since approximately of ...
(Cr I and uranium (U I can be reduced to less mobile and/or less toxic forms (e.g., Cr II U V. Similarly, reduction of sulfate to sulfide (sulfidogenesis) can be used to immobilize certain metals (e.g.,
zinc Zinc is a chemical element; it has symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodic tabl ...
,
cadmium Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...
). The mobility of certain metals including chromium (Cr) and uranium (U) varies depending on the oxidation state of the material. Microorganisms can be used to lower the toxicity and mobility of chromium by reducing hexavalent chromium, Cr(VI) to trivalent Cr(III). Reduction of the more mobile U(VI) species affords the less mobile U(IV) derivatives. Microorganisms are used in this process because the reduction rate of these metals is often slow in the absence of microbial interactions Research is also underway to develop methods to remove metals from water by enhancing the sorption of the metal to cell walls. This approach has been evaluated for treatment of cadmium, chromium, and lead. Genetically modified bacteria has also been explored for use in sequestration of Arsenic. Phytoextraction processes concentrate contaminants in the biomass for subsequent removal. Metal extractions can in principle be performed in situ or ex situ where in situ is preferred since it is less expensive to excavate the substrate. Bioremediation is not specific to metals. In 2010 there was a massive oil spill in the Gulf of Mexico. Populations of bacteria and
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
were used to rejuvenate the coast after the oil spill. These microorganisms over time have developed metabolic networks that can utilize hydrocarbons such as oil and petroleum as a source of carbon and energy. Microbial bioremediation is a very effective modern technique for restoring natural systems by removing toxins from the environment.


Pesticides

Of the many ways to deal with pesticide contamination, bioremediation promises to be more effective. Many sites around the world are contaminated with agrichemicals. These agrichemicals often resist biodegradation, by design. Harming all manners of organic life with long term health issues such as cancer, rashes, blindness, paralysis, and mental illness. An example is Lindane which was a commonly used insecticide in the 20th century. Long time exposure poses a serious threat to humans and the surrounding ecosystem. Lindane reduces the potential of beneficial bacteria in the soil such as nitrogen fixation cyanobacteria. As well as causing central nervous system issues in smaller mammals such as seizures, dizziness, and even death. What makes it so harmful to these organisms is how quickly distributed it gets through the brain and fatty tissues. While Lindane has been mostly limited to specific use, it is still produced and used around the world. Actinobacteria has been a promising candidate ''in situ'' technique specifically for removing pesticides. When certain strains of Actinobacteria have been grouped together, their efficiency in degrading pesticides has enhanced. As well as being a reusable technique that strengthens through further use by limiting the migration space of these cells to target specific areas and not fully consume their cleansing abilities. Despite encouraging results, Actinobacteria has only been used in controlled lab settings and will need further development in finding the cost effectiveness and scalability of use.


Limitations of bioremediation

Bioremediation is rarely employed to remediate pollutants.
Heavy metals upright=1.2, Crystals of lead.html" ;"title="osmium, a heavy metal nearly twice as dense as lead">osmium, a heavy metal nearly twice as dense as lead Heavy metals is a controversial and ambiguous term for metallic elements with relatively h ...
and
radionuclides A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
generally cannot be biodegraded. In some cases, these metals can be bio-transformed to less mobile forms. In some cases, microbes do not fully mineralize the pollutant, potentially producing a more toxic compound. For example, under anaerobic conditions, the
reductive dehalogenation In organochlorine chemistry, reductive dechlorination describes any chemical reaction which cleaves the covalent bond between carbon and chlorine via reductants, to release chloride ions. Many modalities have been implemented, depending on the ...
of TCE may produce dichloroethylene (DCE) and
vinyl chloride Vinyl chloride is an organochloride with the formula H2C =CHCl. It is also called vinyl chloride monomer (VCM) or chloroethene. It is an important industrial chemical chiefly used to produce the polymer polyvinyl chloride (PVC). Vinyl chloride is a ...
(VC), which are suspected or known
carcinogen A carcinogen () is any agent that promotes the development of cancer. Carcinogens can include synthetic chemicals, naturally occurring substances, physical agents such as ionizing and non-ionizing radiation, and biologic agents such as viruse ...
s. However, the microorganism ''
Dehalococcoides ''Dehalococcoides'' is a genus of bacteria within class Dehalococcoidia that obtain energy via the oxidation of hydrogen and subsequent reductive dehalogenation of halocarbon, halogenated organic compounds in a mode of anaerobic respiration calle ...
'' can further reduce DCE and VC to the non-toxic product ethene. The molecular pathways for bioremediation are of considerable interest. In addition, knowing these pathways will help develop new technologies that can deal with sites that have uneven distributions of a mixture of contaminants. Biodegradation requires microbial population with the metabolic capacity to degrade the pollutant. The biological processes used by these microbes are highly specific, therefore, many environmental factors must be taken into account and regulated as well. It can be difficult to extrapolate the results from the small-scale test studies into big field operations. In many cases, bioremediation takes more time than other alternatives such as land filling and
incineration Incineration is a waste treatment process that involves the combustion of substances contained in waste materials. Industrial plants for waste incineration are commonly referred to as waste-to-energy facilities. Incineration and other high ...
. Another example is bioventing, which is inexpensive to bioremediate contaminated sites, however, this process is extensive and can take a few years to decontaminate a site.> Another major drawback is finding the right species to perform bioremediation. In order to prevent the introduction and spreading of an invasive species to the ecosystem, an indigenous species is needed. As well as a species plentiful enough to clean the whole site without exhausting the population. Finally the species should be resilient enough to withstand the environmental conditions. These specific criteria may make it difficult to perform bioremediation on a contaminated site. In agricultural industries, the use of
pesticide Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others (see table). The most common of these are herbicides, which account for approximately 50% of all p ...
s is a top factor in direct
soil contamination Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activit ...
and runoff water contamination. The limitation or remediation of pesticides is the low bioavailability. Altering the pH and temperature of the contaminated soil is a resolution to increase bioavailability which, in turn, increased degradation of harmful compounds. The compound
acrylonitrile Acrylonitrile is an organic compound with the formula and the structure . It is a colorless, volatile liquid. It has a pungent odor of garlic or onions. Its molecular structure consists of a vinyl group () linked to a nitrile (). It is an im ...
is commonly produced in industrial setting but adversely contaminates soils. Microorganisms containing nitrile hydratases (NHase) degraded harmful acrylonitrile compounds into non-polluting substances. Since the experience with harmful contaminants are limited, laboratory practices are required to evaluate effectiveness, treatment designs, and estimate treatment times. Bioremediation processes may take several months to several years depending on the size of the contaminated area.


Genetic engineering

The use of
genetic engineering Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of Genetic engineering techniques, technologies used to change the genet ...
to create organisms specifically designed for bioremediation is under preliminary research. Two category of genes can be inserted in the organism: degradative genes, which encode proteins required for the degradation of pollutants, and reporter genes, which encode proteins able to monitor pollution levels. Numerous members of ''
Pseudomonas ''Pseudomonas'' is a genus of Gram-negative bacteria belonging to the family Pseudomonadaceae in the class Gammaproteobacteria. The 348 members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a ...
'' have been modified with the ''lux'' gene for the detection of the polyaromatic hydrocarbon naphthalene. A field test for the release of the modified organism has been successful on a moderately large scale. There are concerns surrounding release and containment of genetically modified organisms into the environment due to the potential of horizontal gene transfer. Genetically modified organisms are classified and controlled under the
Toxic Substances Control Act of 1976 The Toxic Substances Control Act (TSCA) is a United States law, passed by the United States Congress, Congress in 1976 and administered by the United States United States Environmental Protection Agency, Environmental Protection Agency (EPA), t ...
under
United States Environmental Protection Agency The Environmental Protection Agency (EPA) is an independent agency of the United States government tasked with environmental protection matters. President Richard Nixon proposed the establishment of EPA on July 9, 1970; it began operation on De ...
. Measures have been created to address these concerns. Organisms can be modified such that they can only survive and grow under specific sets of environmental conditions. In addition, the tracking of modified organisms can be made easier with the insertion of
bioluminescence Bioluminescence is the emission of light during a chemiluminescence reaction by living organisms. Bioluminescence occurs in multifarious organisms ranging from marine vertebrates and invertebrates, as well as in some Fungus, fungi, microorgani ...
genes for visual identification. Genetically modified organisms have been created to treat oil spills and break down certain
plastic Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
s (PET).


Additive manufacturing

Additive manufacturing 3D printing, or additive manufacturing, is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer ...
technologies such as bioprinting offer distinctive benefits that can be leveraged in bioremediation to develop structures with characteristics tailored to biological systems and environmental cleanup needs, and even though the adoption of this technology in bioremediation is in its early stages, the area is seeing massive growth.


See also

* Bioremediation of radioactive waste *
Biosurfactant Biosurfactant usually refers to surfactants of microbial origin. Most of the biosurfactants produced by microbes are synthesized extracellularly and many microbes are known to produce biosurfactants in large relative quantities. Some are of commerci ...
*
Chelation Chelation () is a type of bonding of ions and their molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These l ...
* Dutch pollutant standards * Folkewall * In situ chemical oxidation * In situ chemical reduction * List of environment topics * ''Mega Borg'' Oil Spill * Microbial biodegradation *
Mycoremediation Mycoremediation (from ancient Greek (), meaning "fungus", and the suffix , in Latin meaning 'restoring balance') is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the environment. Fungi have been pro ...
* Mycorrhizal bioremediation * Pleurotus * Phytoremediation * ''
Pseudomonas putida ''Pseudomonas putida'' is a Gram-negative, rod-shaped, saprophytic soil bacterium. It has a versatile metabolism and is amenable to genetic manipulation, making it a common organism used in research, bioremediation, and synthesis of chemicals and ...
'' (used for degrading oil) *
Restoration ecology Ecological restoration, or ecosystem restoration, is the process of assisting the recovery of an ecosystem that has been degraded, damaged, destroyed or transformed. It is distinct from Conservation movement, conservation in that it attempts t ...
* Xenocatabolism


References


External links


Phytoremediation, hosted by the Missouri Botanical Garden

To remediate or to not remediate?
* Anaerobi
Bioremediation
{{Authority control Biotechnology Environmental soil science Environmental engineering Environmental terminology Conservation projects Ecological restoration Soil contamination Radioactive waste