HOME

TheInfoList



OR:

Bayesian statistics ( or ) is a theory in the field of
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
based on the Bayesian interpretation of probability, where probability expresses a ''degree of belief'' in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation, which views probability as the limit of the relative frequency of an event after many trials. More concretely, analysis in Bayesian methods codifies prior knowledge in the form of a prior distribution. Bayesian statistical methods use Bayes' theorem to compute and update probabilities after obtaining new data. Bayes' theorem describes the
conditional probability In probability theory, conditional probability is a measure of the probability of an Event (probability theory), event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. This ...
of an event based on data as well as prior information or beliefs about the event or conditions related to the event. For example, in Bayesian inference, Bayes' theorem can be used to estimate the parameters of a
probability distribution In probability theory and statistics, a probability distribution is a Function (mathematics), function that gives the probabilities of occurrence of possible events for an Experiment (probability theory), experiment. It is a mathematical descri ...
or
statistical model A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of Sample (statistics), sample data (and similar data from a larger Statistical population, population). A statistical model repre ...
. Since Bayesian statistics treats probability as a degree of belief, Bayes' theorem can directly assign a probability distribution that quantifies the belief to the parameter or set of parameters. Bayesian statistics is named after Thomas Bayes, who formulated a specific case of Bayes' theorem in a paper published in 1763. In several papers spanning from the late 18th to the early 19th centuries, Pierre-Simon Laplace developed the Bayesian interpretation of probability. Laplace used methods now considered Bayesian to solve a number of statistical problems. While many Bayesian methods were developed by later authors, the term "Bayesian" was not commonly used to describe these methods until the 1950s. Throughout much of the 20th century, Bayesian methods were viewed unfavorably by many statisticians due to philosophical and practical considerations. Many of these methods required much computation, and most widely used approaches during that time were based on the frequentist interpretation. However, with the advent of powerful computers and new
algorithm In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
s like Markov chain Monte Carlo, Bayesian methods have gained increasing prominence in statistics in the 21st century.


Bayes's theorem

Bayes's theorem is used in Bayesian methods to update probabilities, which are degrees of belief, after obtaining new data. Given two events A and B, the conditional probability of A given that B is true is expressed as follows: P(A \mid B) = \frac where P(B) \neq 0. Although Bayes's theorem is a fundamental result of
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
, it has a specific interpretation in Bayesian statistics. In the above equation, A usually represents a
proposition A proposition is a statement that can be either true or false. It is a central concept in the philosophy of language, semantics, logic, and related fields. Propositions are the object s denoted by declarative sentences; for example, "The sky ...
(such as the statement that a coin lands on heads fifty percent of the time) and B represents the evidence, or new data that is to be taken into account (such as the result of a series of coin flips). P(A) is the prior probability of A which expresses one's beliefs about A before evidence is taken into account. The prior probability may also quantify prior knowledge or information about A. P(B \mid A) is the
likelihood function A likelihood function (often simply called the likelihood) measures how well a statistical model explains observed data by calculating the probability of seeing that data under different parameter values of the model. It is constructed from the ...
, which can be interpreted as the probability of the evidence B given that A is true. The likelihood quantifies the extent to which the evidence B supports the proposition A. P(A \mid B) is the
posterior probability The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posteri ...
, the probability of the proposition A after taking the evidence B into account. Essentially, Bayes's theorem updates one's prior beliefs P(A) after considering the new evidence B. The probability of the evidence P(B) can be calculated using the law of total probability. If \ is a partition of the sample space, which is the set of all outcomes of an experiment, then, P(B) = P(B \mid A_1)P(A_1) + P(B \mid A_2)P(A_2) + \dots + P(B \mid A_n)P(A_n) = \sum_i P(B \mid A_i)P(A_i) When there are an infinite number of outcomes, it is necessary to integrate over all outcomes to calculate P(B) using the law of total probability. Often, P(B) is difficult to calculate as the calculation would involve sums or integrals that would be time-consuming to evaluate, so often only the product of the prior and likelihood is considered, since the evidence does not change in the same analysis. The posterior is proportional to this product: P(A \mid B) \propto P(B \mid A)P(A) The maximum a posteriori, which is the mode of the posterior and is often computed in Bayesian statistics using
mathematical optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfiel ...
methods, remains the same. The posterior can be approximated even without computing the exact value of P(B) with methods such as Markov chain Monte Carlo or variational Bayesian methods.


Bayesian methods

The general set of statistical techniques can be divided into a number of activities, many of which have special Bayesian versions.


Bayesian inference

Bayesian inference refers to statistical inference where uncertainty in inferences is quantified using probability. In classical frequentist inference, model parameters and hypotheses are considered to be fixed. Probabilities are not assigned to parameters or hypotheses in frequentist inference. For example, it would not make sense in frequentist inference to directly assign a probability to an event that can only happen once, such as the result of the next flip of a fair coin. However, it would make sense to state that the proportion of heads approaches one-half as the number of coin flips increases. Statistical models specify a set of statistical assumptions and processes that represent how the sample data are generated. Statistical models have a number of parameters that can be modified. For example, a coin can be represented as samples from a Bernoulli distribution, which models two possible outcomes. The Bernoulli distribution has a single parameter equal to the probability of one outcome, which in most cases is the probability of landing on heads. Devising a good model for the data is central in Bayesian inference. In most cases, models only approximate the true process, and may not take into account certain factors influencing the data. In Bayesian inference, probabilities can be assigned to model parameters. Parameters can be represented as random variables. Bayesian inference uses Bayes' theorem to update probabilities after more evidence is obtained or known. Furthermore, Bayesian methods allow for placing priors on entire models and calculating their posterior probabilities using Bayes' theorem. These posterior probabilities are proportional to the product of the prior and the marginal likelihood, where the marginal likelihood is the integral of the sampling density over the prior distribution of the parameters. In complex models, marginal likelihoods are generally computed numerically.


Statistical modeling

The formulation of
statistical model A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of Sample (statistics), sample data (and similar data from a larger Statistical population, population). A statistical model repre ...
s using Bayesian statistics has the identifying feature of requiring the specification of prior distributions for any unknown parameters. Indeed, parameters of prior distributions may themselves have prior distributions, leading to Bayesian hierarchical modeling,Hajiramezanali, E. & Dadaneh, S. Z. & Karbalayghareh, A. & Zhou, Z. & Qian, X. Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data. 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada. also known as multi-level modeling. A special case is
Bayesian networks A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their Conditional dependence, conditional dependencies via a directed a ...
. For conducting a Bayesian statistical analysis, best practices are discussed by van de Schoot et al. For reporting the results of a Bayesian statistical analysis, Bayesian analysis reporting guidelines (BARG) are provided in an open-access article by John K. Kruschke.


Design of experiments

The Bayesian design of experiments includes a concept called 'influence of prior beliefs'. This approach uses
sequential analysis In statistics, sequential analysis or sequential hypothesis testing is statistical analysis where the sample size is not fixed in advance. Instead data is evaluated as it is collected, and further sampling is stopped in accordance with a pre-defi ...
techniques to include the outcome of earlier experiments in the design of the next experiment. This is achieved by updating 'beliefs' through the use of prior and posterior distribution. This allows the design of experiments to make good use of resources of all types. An example of this is the multi-armed bandit problem.


Exploratory analysis of Bayesian models

Exploratory analysis of Bayesian models is an adaptation or extension of the
exploratory data analysis In statistics, exploratory data analysis (EDA) is an approach of data analysis, analyzing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods. A statistical model can be used or ...
approach to the needs and peculiarities of Bayesian modeling. In the words of Persi Diaconis: The inference process generates a posterior distribution, which has a central role in Bayesian statistics, together with other distributions like the posterior predictive distribution and the prior predictive distribution. The correct visualization, analysis, and interpretation of these distributions is key to properly answer the questions that motivate the inference process. When working with Bayesian models there are a series of related tasks that need to be addressed besides inference itself: * Diagnoses of the quality of the inference, this is needed when using numerical methods such as Markov chain Monte Carlo techniques * Model criticism, including evaluations of both model assumptions and model predictions * Comparison of models, including model selection or model averaging * Preparation of the results for a particular audience All these tasks are part of the Exploratory analysis of Bayesian models approach and successfully performing them is central to the iterative and interactive modeling process. These tasks require both numerical and visual summaries.


See also

* Bayesian epistemology * For a list of mathematical logic notation used in this article ** Notation in probability and statistics **
List of logic symbols In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the sub ...


References


Further reading

* * * * * * *''Johnson, Alicia A.; Ott, Miles Q.; Dogucu, Mine. (2022)'
Bayes Rules! An Introduction to Applied Bayesian Modeling
Chapman and Hall ISBN 9780367255398


External links

* *
Bayesian statistics
David Spiegelhalter, Kenneth Rice Scholarpedia 4(8):5230. doi:10.4249/scholarpedia.5230
Bayesian modeling book
and examples available for downloading. *
Bayesian A/B Testing Calculator
Dynamic Yield {{Authority control