Austenitic Microstructure
   HOME

TheInfoList



OR:

Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a
solid solution A solid solution, a term popularly used for metals, is a homogeneous mixture of two compounds in solid state and having a single crystal structure. Many examples can be found in metallurgy, geology, and solid-state chemistry. The word "solutio ...
of
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
with an
alloy An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
ing element. In
plain-carbon steel Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states: * no minimum content is specified or required for chromium, coba ...
, austenite exists above the critical
eutectoid A eutectic system or eutectic mixture ( ) is a type of a homogeneous mixture that has a melting point lower than those of the constituents. The lowest possible melting point over all of the mixing ratios of the constituents is called the ''eutec ...
temperature of 1000 K (727 °C); other alloys of
steel Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to steel's high Young's modulus, elastic modulus, Yield (engineering), yield strength, Fracture, fracture strength a ...
have different eutectoid temperatures. The austenite allotrope is named after Sir
William Chandler Roberts-Austen Sir William Chandler Roberts-Austen (3 March 1843 in Kennington – 22 November 1902 in London) was an English metallurgist noted for his research on the physical properties of metals and their alloys. The austenite class of iron alloys is name ...
(1843–1902). It exists at room temperature in some stainless steels due to the presence of nickel stabilizing the austenite at lower temperatures.


Allotrope of iron

From alpha iron undergoes a
phase transition In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic Sta ...
from
body-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the Crystal structure#Unit cell, unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There ...
(BCC) to the
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties o ...
(FCC) configuration of gamma iron, also called austenite. This is similarly soft and ductile but can dissolve considerably more carbon (as much as 2.03% by mass at ). This gamma form of iron is present in the most commonly used type of
stainless steel Stainless steel, also known as inox, corrosion-resistant steel (CRES), or rustless steel, is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Stainless steel's resistance to corrosion comes from its chromi ...
for making hospital and food-service equipment.


Material

Austenitization means to heat the iron, iron-based metal, or steel to a temperature at which it changes crystal structure from ferrite to austenite. The more-open structure of the austenite is then able to absorb carbon from the iron-carbides in carbon steel. An incomplete initial austenitization can leave undissolved
carbide In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece. Interstitial / Metallic carbides The carbides of th ...
s in the matrix. For some iron metals, iron-based metals, and steels, the presence of carbides may occur during the austenitization step. The term commonly used for this is two-phase austenitization.


Austempering

Austempering is a hardening process that is used on iron-based
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
s to promote better mechanical properties. The metal is heated into the austenite region of the iron-
cementite Cementite (or iron carbide) is a compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, b ...
phase diagram and then quenched in a salt bath or other heat extraction medium that is between temperatures of . The metal is annealed in this temperature range until the austenite turns to
bainite Bainite is a plate-like microstructure that forms in steels at temperatures of 125–550 °C (depending on alloy content). First described by E. S. Davenport and Edgar Bain, it is one of the products that may form when austenite (the face ...
or ausferrite (bainitic ferrite + high-carbon austenite). By changing the temperature for austenitization, the austempering process can yield different and desired microstructures. A higher austenitization temperature can produce a higher carbon content in austenite, whereas a lower temperature produces a more uniform distribution of austempered structure. The carbon content in austenite as a function of austempering time has been established.


Behavior in plain carbon-steel

As austenite cools, the carbon diffuses out of the austenite and forms carbon-rich iron-carbide (cementite) and leaves behind carbon-poor ferrite. Depending on alloy composition, a layering of ferrite and cementite, called
pearlite Pearlite is a two-phased, lamellar (or layered) structure composed of alternating layers of ferrite (87.5 wt%) and cementite (12.5 wt%) that occurs in some steels and cast irons. During slow cooling of an iron-carbon alloy, pearlite for ...
, may form. If the rate of cooling is very swift, the carbon does not have sufficient time to diffuse, and the alloy may experience a large
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an or ...
distortion known as
martensitic transformation A diffusionless transformation, commonly known as displacive transformation, denotes solid-state alterations in crystal structures that do not hinge on the diffusion of atoms across extensive distances. Rather, these transformations manifest a ...
in which it transforms into
martensite Martensite is a very hard form of steel crystalline structure. It is named after German metallurgist Adolf Martens. By analogy the term can also refer to any crystal structure that is formed by diffusionless transformation. Properties Mar ...
, a body centered tetragonal structure (BCT). The rate of cooling determines the relative proportions of martensite, ferrite, and cementite, and therefore determines the mechanical properties of the resulting steel, such as
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
and
tensile strength Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or F_\text in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate ...
. A high cooling rate of thick sections will cause a steep thermal gradient in the material. The outer layers of the heat treated part will cool faster and shrink more, causing it to be under tension and thermal straining. At high cooling rates, the material will transform from austenite to martensite which is much harder and will generate cracks at much lower strains. The volume change (martensite is less dense than austenite) can generate stresses as well. The difference in strain rates of the inner and outer portion of the part may cause cracks to develop in the outer portion, compelling the use of slower quenching rates to avoid this. By alloying the steel with
tungsten Tungsten (also called wolfram) is a chemical element; it has symbol W and atomic number 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first ...
, the carbon diffusion is slowed and the transformation to BCT allotrope occurs at lower temperatures, thereby avoiding the cracking. Such a material is said to have its hardenability increased. Tempering following quenching will transform some of the brittle martensite into tempered martensite. If a low-hardenability steel is quenched, a significant amount of austenite will be retained in the microstructure, leaving the steel with internal stresses that leave the product prone to sudden fracture. As austenite cools, its decomposition plays a crucial role in determining the final microstructure of steel. The kinetics of this transformation are highly influenced by the morphology of the carbides present in the material. The presence of coarse carbides, for instance, can slow down the rate of austenite formation during intercritical annealing, due to their slow dissolution kinetics. Pearlite, a lamellar structure consisting of alternating layers of ferrite and cementite, forms through cooperative nucleation and growth processes from austenite. The thickness of these layers has a direct impact on the mechanical properties of the steel. The decomposition of austenite is influenced by the cooling rate, which affects the morphology of carbides and thus the final steel structure. Slow cooling rates allow for the development of coarse cementite particles at grain boundaries, while faster cooling rates promote the formation of fine pearlitic colonies. Coiling temperature, in particular, has a significant impact on carbide morphology: lower coiling temperatures (below the eutectoid temperature) promote fine pearlite formation, while higher temperatures encourage the formation of coarse cementite. This difference in carbide morphology influences the rate and temperature at which austenite forms and decomposes during subsequent heat treatments.


Behavior in cast iron

Heating white
cast iron Cast iron is a class of iron–carbon alloys with a carbon content of more than 2% and silicon content around 1–3%. Its usefulness derives from its relatively low melting temperature. The alloying elements determine the form in which its car ...
(containing iron carbide, i.e. cementite, but no uncombined carbon) above causes the formation of austenite in crystals of primary cementite. This austenisation of white iron occurs in primary cementite at the interphase boundary with ferrite. When the grains of austenite form in cementite, they occur as lamellar clusters oriented along the cementite crystal layer surface. Austenite is formed by diffusion of carbon atoms from cementite into ferrite.


Stabilization at lower temperatures

The addition of certain alloying elements, such as
manganese Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
and
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
, can stabilize the austenitic structure, facilitating heat-treatment of
low-alloy steel Alloy steel is steel that is alloyed with a variety of elements in amounts between 1.0% and 50% by weight, typically to improve its mechanical properties. Types Alloy steels divide into two groups: low and high alloy. The boundary between the t ...
s. In the extreme case of
austenitic stainless steel Austenitic stainless steel is one of the five families of stainless steel (along with ferritic, martensitic, duplex and precipitation hardened). Its primary crystalline structure is austenite (face-centered cubic). Such steels are not hardena ...
, much higher alloy content makes this structure stable even at room temperature. On the other hand, such elements as
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
,
molybdenum Molybdenum is a chemical element; it has Symbol (chemistry), symbol Mo (from Neo-Latin ''molybdaenum'') and atomic number 42. The name derived from Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals hav ...
, and
chromium Chromium is a chemical element; it has Symbol (chemistry), symbol Cr and atomic number 24. It is the first element in Group 6 element, group 6. It is a steely-grey, Luster (mineralogy), lustrous, hard, and brittle transition metal. Chromium ...
tend to de-stabilize austenite, raising the eutectoid temperature.


Thin films

Austenite is only stable above in bulk metal form. However, fcc transition metals can be grown on a
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties o ...
(fcc) or
diamond cubic In crystallography, the diamond cubic crystal structure is a repeating pattern of 8 atoms that certain materials may adopt as they solidify. While the first known example was diamond, other elements in group 14 also adopt this structure, in ...
. The epitaxial growth of austenite on the diamond (100) face is feasible because of the close lattice match and the symmetry of the diamond (100) face is fcc. More than a monolayer of γ-iron can be grown because the critical thickness for the strained multilayer is greater than a monolayer. The determined critical thickness is in close agreement with theoretical prediction.


Transformation and Curie point

In many magnetic ferrous alloys, the
Curie point In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their magnet, permanent magnetic properties, which can (in most cases) be replaced by magnetization, induced ...
, the temperature at which magnetic materials cease to behave magnetically, occurs at nearly the same temperature as the austenite transformation. This behavior is attributed to the
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
nature of austenite, while both martensite and ferrite are strongly
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
.


Thermo-optical emission, colour indicates temperature

During
heat treating Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are al ...
, a
blacksmith A blacksmith is a metalsmith who creates objects primarily from wrought iron or steel, but sometimes from #Other metals, other metals, by forging the metal, using tools to hammer, bend, and cut (cf. tinsmith). Blacksmiths produce objects such ...
causes phase changes in the iron-carbon system to control the material's mechanical properties, often using the annealing, quenching, and tempering processes. In this context, the color of light, or "
blackbody radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific continuous spectr ...
", emitted by the workpiece is an approximate gauge of temperature. Temperature is often gauged by watching the
color temperature Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non-reflective body. The temperature of the ideal emitter that matches the color most clos ...
of the work, with the transition from a deep cherry-red to orange-red ( to ) corresponding to the formation of austenite in medium and high-carbon steel. In the visible spectrum, this glow increases in brightness as temperature increases. When cherry-red, the glow is near its lowest intensity and may not be visible in ambient light. Hence blacksmiths usually austenitize steel in low-light conditions to accurately judge the color of the glow.


See also

*
Gamma loop At atmospheric pressure, three allotropic forms of iron exist, depending on temperature: alpha iron (α-Fe, ferrite), gamma iron (γ-Fe, austenite), and delta iron (δ-Fe, similar to alpha iron). At very high pressure, a fourth form exists, ...
*
Allotropes of iron At atmospheric pressure, three allotropic forms of iron exist, depending on temperature: alpha iron (α-Fe, ferrite), gamma iron (γ-Fe, austenite), and delta iron (δ-Fe, similar to alpha iron). At very high pressure, a fourth form exists, ...


References

{{Authority control Steels