Attenuated Total Reflectance
   HOME

TheInfoList



OR:

Attenuated total reflection (ATR) is a sampling technique used in conjunction with
infrared spectroscopy Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functio ...
which enables samples to be examined directly in the
solid Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
or
liquid Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. The density of a liquid is usually close to th ...
state without further preparation. ATR uses a property of
total internal reflection In physics, total internal reflection (TIR) is the phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely refl ...
resulting in an
evanescent wave In electromagnetics, an evanescent field, or evanescent wave, is an oscillating electric and/or magnetic field that does not propagate as an electromagnetic wave but whose energy is spatially concentrated in the vicinity of the source (oscilla ...
. A beam of
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
is passed through the ATR crystal in such a way that it reflects at least once off the internal surface in contact with the sample. This reflection forms the evanescent wave which extends into the sample. The penetration depth into the sample is typically between 0.5 and 2
micrometre The micrometre (English in the Commonwealth of Nations, Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a uni ...
s, with the exact value determined by the wavelength of light, the angle of incidence and the indices of refraction for the ATR crystal and the medium being probed. The number of reflections may be varied by varying the angle of incidence. The beam is then collected by a detector as it exits the crystal. Most modern infrared spectrometers can be converted to characterise samples via ATR by mounting the ATR accessory in the spectrometer's sample compartment. The accessibility, rapid sample turnaround and ease of use of ATR with
Fourier transform infrared spectroscopy Fourier transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared Electromagnetic spectrum, spectrum of Absorption (electromagnetic radiation), absorption or Emission (electromagnetic radiation), emission of a solid, liquid, ...
(FTIR) has led to substantial use by the scientific community. This evanescent effect only works if the crystal is made of an optical material with a higher
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
than the sample being studied. Otherwise light is lost to the sample. In the case of a liquid sample, pouring a shallow amount over the surface of the crystal is sufficient. In the case of a solid sample, samples are firmly clamped to ensure good contact is made and to remove trapped air that would reduce signal intensity. The signal to noise ratio obtained depends on the number of reflections but also on the total length of the optical light path which dampens the intensity. Therefore, a general claim that more reflections give better sensitivity cannot be made. Typical materials for ATR crystals include
germanium Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
,
KRS-5 The thallium halides include monohalides , where thallium has oxidation state +1, trihalides , where thallium generally has oxidation state +3, and some intermediate halides containing thallium with mixed +1 and +3 oxidation states. X is a halogen. ...
and
zinc selenide Zinc selenide is the inorganic compound with the formula ZnSe. It is a lemon-yellow solid although most samples have a duller color due to the effects of oxidation. It is an intrinsic semiconductor with a band gap of about 2.70  eV at , equi ...
, while
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
is ideal for use in the Far-IR region of the
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
. The excellent mechanical properties of
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Diamond is tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of e ...
make it an ideal material for ATR, particularly when studying very hard solids, although the broad diamond
phonon A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. In the context of optically trapped objects, the quantized vibration mode can be defined a ...
band between 2600 and 1900 cm−1 significantly decreases signal to noise in this region. The shape of the crystal depends on the type of spectrometer and nature of the sample. With dispersive spectrometers, the crystal is a rectangular slab with chamfered edges, seen in cross-section in the illustrations. Other geometries use prisms, half-spheres, or thin sheets.


Applications

Infrared (IR) spectroscopy by ATR is applicable to the same chemical or biological systems as the transmission method. One advantage of ATR-IR over transmission-IR is the limited path length into the sample. This avoids the problem of strong attenuation of the IR signal in highly absorbing media such as aqueous solutions. For ultraviolet or visible light (UV/Vis) the evanescent light path is sufficiently short such that interaction with the sample is decreased with wavelength. For optically dense samples, this may allow for measurements with UV. Also, as no light path has to be established single shaft probes are used for process monitoring and are applicable in both the near and mid infrared spectrum. Recently, ATR-IR has been applied to
microfluidic Microfluidics refers to a system that manipulates a small amount of fluids (10−9 to 10−18 liters) using small channels with sizes of ten to hundreds of micrometres. It is a multidisciplinary field that involves molecular analysis, molecular bi ...
flows of aqueous solutions by engineering microreactors with built-in apertures for the ATR crystal, allowing the flow within microchannels to pass across the crystal surface for characterisation, or in dedicated flow cells. Due to the ATR geometry and the resulting evanescent wave, it is possible with this technique to study transport phenomena and sorption kinetics through thin films. The ability to passively characterise samples, with no sample preparation has also led to the use of ATR-FTIR in studying
trace evidence Trace evidence occurs when objects make contact, and material is transferred. This type of evidence is usually not visible to the naked eye and requires specific tools and techniques to be located and obtained. Due to this, trace evidence is often ...
in
forensic science Forensic science combines principles of law and science to investigate criminal activity. Through crime scene investigations and laboratory analysis, forensic scientists are able to link suspects to evidence. An example is determining the time and ...
. ATR-FTIR is also used as a tool in pharmacological research to investigate protein/pharmaceutical interactions in detail. Water-soluble proteins to be investigated require
Polyhistidine-tag A polyhistidine-tag, best known by the trademarked name His-tag, is an amino acid motif in proteins that typically consists of at least six histidine (''His'') residues, often at the N- or C-terminus of the protein. It is also known as a hexa his ...
s, allowing the macromolecule to be anchored to a lipid bilayer, which is attached to a Germanium crystal or other suitable optical media. Internal reflection with and without applied pharmaceutical or ligand will produce difference spectra to study conformational changes of the proteins upon binding.


See also

*
Surface plasmon resonance Surface plasmon resonance (SPR) is a phenomenon that occurs where electrons in a thin metal sheet become excited by light that is directed to the sheet with a particular angle of incidence (optics), angle of incidence, and then travel parallel to ...


Sources


Bibliography

* * {{cite web , url=http://www.nuance.northwestern.edu/keck-ii/keck-ii-instruments/ftir-spectroscopy/index.html , title= Fourier Transform Infrared Spectroscopy (FT-IR) , website=nuance.northwestern.edu , publisher= Northwestern University Atomic and Nanoscale Characterization Experimental Center , archive-url=https://web.archive.org/web/20140524121905/http://www.nuance.northwestern.edu/keck-ii/keck-ii-instruments/ftir-spectroscopy/index.html , archive-date=May 24, 2014 Scientific techniques Infrared spectroscopy