Atmosphere Of Io
   HOME

TheInfoList



OR:

The atmosphere of Io is the extremely thin blanket of gases surrounding
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
's third largest moon Io. The atmosphere is primarily composed of
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a colorless gas with a pungent smell that is responsible for the odor of burnt matches. It is r ...
(), along with sulfur monoxide (),
sodium chloride Sodium chloride , commonly known as Salt#Edible salt, edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs a ...
(), and monoatomic
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
and
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
.
Dioxygen There are several known allotropes of oxygen. The most familiar is molecular oxygen (), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (). Others are: * Ato ...
is also expected to be present.


Origin

Io is considered to be the most volcanically active body in the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
. Pele type volcanism is believed to be the cause of sulfur components in the atmosphere. Volcanic plumes pump 104 kg of SO2 (sulfur dioxide) per second into Io's atmosphere on average, though most of this is deposited back onto the surface. Sunlight sublimates this solid SO2, turning it into the gaseous state and creating a thin atmosphere. Due to this, atmospheric pressure is significantly higher near volcanoes, about 0.5 to 4
mPa MPA or mPa may refer to: Academia Academic degrees * Master of Performing Arts * Master of Professional Accountancy * Master of Public Administration * Master of Public Affairs Schools * Mesa Preparatory Academy * Morgan Park Academy * M ...
(5 to 40 nbar), around 5,000 to 40,000 times larger than that of the night side of Io. Apart from this, minor components like NaCl, SO, O are also formed by other processes. The main source of NaCl and KCl is thought to be volcanic. Some volcanic vents are thought to expel NaCl and KCl but little to no SO2.
Sputtering In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and c ...
of the surface by charged particles from Jupiter's magnetosphere is thought to be the origin of the NaCl, SO, O, and S. They are also formed from direct volcanic outgassing.
Photodissociation Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by absorption of light or photons. It is defined as the interaction of one or more photons wi ...
is thought to be the origin of SO, Na, K, and Cl. Photodissociation plays an important role in the atmosphere at higher latitudes. Because the process happens more often during daytime, the concentration of Na is believed to be higher during daytime.


Physical characteristics

SO2 is the main constituent, comprising 90% of the atmospheric pressure. About 3%–10% is SO. The atmospheric pressure varies from 0.033 to 0.3 mPa or 0.33 to 3  nbar, seen on Io's anti-Jupiter hemisphere and along the equator, and temporally in the early afternoon when the temperature of surface frost peaks. On the night side, SO2 freezes, decreasing the atmospheric pressure to 0.1 × 10−7 to 1 × 10−7 Pa (0.0001 to 0.001 nbar). Some studies suggest that the night side atmosphere consists of non-condensable gases like atomic O and SO. The atmosphere on the side facing away from Jupiter is not just denser but also extends over a greater range of latitudes than the side facing Jupiter. The vertical column density at the equator ranges from 1.5 × 1016 cm−2 at sub-Jovian longitudes to 15 × 1016 cm−2 at anti-Jovian longitudes. On the surface, sulfur dioxide is in
vapor pressure Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indicat ...
equilibrium with frost. The temperatures increases to 1,800 K at higher altitudes where the lower atmospheric density permits heating from plasma in the Io plasma torus and from
Joule heating Joule heating (also known as resistive heating, resistance heating, or Ohmic heating) is the process by which the passage of an electric current through a conductor (material), conductor produces heat. Joule's first law (also just Joule's law), ...
from the Io flux tube. The day-side atmosphere is mostly confined to within 40° of the equator, where the surface is warmest and most active volcanic plumes are found. The polar atmospheric pressure is only 2% of the equatorial atmospheric pressure. At about ±40° latitude, the atmospheric pressure will be half of that at the equator. The atmospheric density increases the closer Io gets to the Sun. Farther away from the surface, higher the concentration of O and S2 gets. This is because of the lower mass of oxygen and sulphur atoms compared to others. The O/SO2 ratio is estimated to be between 10% and 20% in the upper atmosphere. These gases exist up to a distance of 10 times the radius of Io. Io has a sodium tail similar to the Sodium tail of the Moon. Io also has an
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays ...
with a density of 2.8 × 1010 m−3 at 80 km altitude, comparable to the ionospheres of
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
and
Venus Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
. Occultation studies by
Pioneer 10 ''Pioneer 10'' (originally designated Pioneer F) is a NASA space probe launched in 1972 that completed the first mission to the planet Jupiter. ''Pioneer 10'' became the first of five artificial objects to achieve the escape velocity needed ...
revealed that the night-side ionosphere is significantly less dense for the first time. Based on the six occultations conducted by the
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
probe in 1997, the ionosphere is asymmetrical: the plasma density varies by longitude. The interpretation of the observations assumes that the increased plasma density is distributed in a spherically symmetrical bound ionosphere with a dense downstream wake. Depending on the location, peak densities of about 5 × 1010 m−3 were found, reaching a maximum of about 2.5 × 1011 m−3 in one of the occultations. Due to its thinness, Io's atmosphere does not cause that much effect on the surface, other than moving SO2 ice around and expanding the size of plume deposit rings when plume material re-enters the denser dayside atmosphere. Every second, almost one tonne of gases escape from Io's atmosphere into outer space due to Jupiter's magnetosphere. Due to this, the atmosphere should be constantly replenished. These gases orbit Jupiter along with Io, creating a Io plasma torus.


Post-ecliptic brightening

Io's atmospheric density is directly related to surface temperature. When Io falls into the shadow of Jupiter during an eclipse, the temperature falls. This causes deposition of the SO2, and results in an 80% decrease in the atmospheric pressure. This increases the
albedo Albedo ( ; ) is the fraction of sunlight that is Diffuse reflection, diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects ...
of Io; thus Io appears brighter when covered with frost immediately after an eclipse. After about 15 minutes the brightness returns to normal, presumably because the frost has disappeared through sublimation. Post-ecliptic brightening can be observed with ground telescopes. Cassini spacecraft captured post-eclipse brightening in near-infrared wavelengths. Further evidence for this theory came in 2013 when the 
Gemini Observatory The Gemini Observatory comprises two 8.1-metre (26.6 ft) telescopes, Gemini North and Gemini South, situated in Hawaii and Chile, respectively. These twin telescopes offer extensive coverage of the northern and southern skies and rank among ...
 was used to directly measure the collapse of Io's SO2 atmosphere during, and its reformation after, eclipse by Jupiter.


Aurora

Io hosts
Aurora An aurora ( aurorae or auroras), also commonly known as the northern lights (aurora borealis) or southern lights (aurora australis), is a natural light display in Earth's sky, predominantly observed in high-latitude regions (around the Arc ...
events, even though the atmosphere is extremely thin. Unlike other celestial bodies where an aurora occurs at the North and South poles, aurora on Io occurs near the equator. This is because aurorae on other bodies are caused by the interactions of the body's magnetosphere with the
solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
. In contrast, Io has no magnetic field of its own. Instead of solar wind, charged particles from Jupiter's magnetosphere interact with Io's atmosphere, creating aurora. Sodium atoms cause a green glow in the aurora. Here blue glows caused by SO2 are nearer to the surface than red glows caused by oxygen. This is because SO2 is heavier than oxygen, and as a result will be more gravitationally bound to the surface. Due to this, red glows reach up to a height of 900 km (560 miles). The aurora moves across Io, as it changes its orientation with respect to Jupiter's magnetosphere as it orbits the planet.


References

{{DEFAULTSORT:Atmosphere Of Io Io (moon) Io Io