HOME

TheInfoList



OR:

A molecular assembler, as defined by K. Eric Drexler, is a "proposed device able to guide chemical reactions by positioning reactive molecules with atomic precision". A molecular assembler is a kind of
molecular machine A molecular machine, nanite, or nanomachine is a molecular component that produces quasi-mechanical movements (output) in response to specific stimuli (input). In cellular biology, macromolecular machines frequently perform tasks essential for l ...
. Some biological molecules such as
ribosome Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to ...
s fit this definition. This is because they receive instructions from
messenger RNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the p ...
and then assemble specific sequences of
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
to construct protein molecules. However, the term "molecular assembler" usually refers to theoretical human-made devices. Beginning in 2007, the British
Engineering and Physical Sciences Research Council The Engineering and Physical Sciences Research Council (EPSRC) is a British Research Council that provides government funding for grants to undertake research and postgraduate degrees in engineering and the physical sciences, mainly to universi ...
has funded development of
ribosome Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to ...
-like molecular assemblers. Clearly, molecular assemblers are possible in this limited sense. A technology roadmap project, led by the
Battelle Memorial Institute Battelle Memorial Institute (more widely known as simply Battelle) is a private nonprofit applied science and technology development company headquartered in Columbus, Ohio. Battelle is a charitable trust organized as a nonprofit corporation u ...
and hosted by several U.S. National Laboratories has explored a range of atomically precise fabrication technologies, including both early-generation and longer-term prospects for programmable molecular assembly; the report was released in December, 2007. In 2008, the Engineering and Physical Sciences Research Council provided funding of £1.5 million over six years (£1,942,235.57, $2,693,808.00 in 2021) for research working towards mechanized mechanosynthesis, in partnership with the Institute for Molecular Manufacturing, amongst others. Likewise, the term "molecular assembler" has been used in science fiction and popular culture to refer to a wide range of fantastic atom-manipulating nanomachines. Much of the controversy regarding "molecular assemblers" results from the confusion in the use of the name for both technical concepts and popular fantasies. In 1992, Drexler introduced the related but better-understood term "molecular manufacturing", which he defined as the programmed " chemical synthesis of complex structures by mechanically positioning reactive molecules, not by manipulating individual atoms". This article mostly discusses "molecular assemblers" in the popular sense. These include hypothetical machines that manipulate individual atoms and machines with organism-like
self-replicating Self-replication is any behavior of a dynamical system that yields construction of an identical or similar copy of itself. Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA is replicated and ca ...
abilities, mobility, ability to consume food, and so forth. These are quite different from devices that merely (as defined above) "guide chemical reactions by positioning reactive molecules with atomic precision". Because synthetic molecular assemblers have never been constructed and because of the confusion regarding the meaning of the term, there has been much controversy as to whether "molecular assemblers" are possible or simply science fiction. Confusion and controversy also stem from their classification as
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal o ...
, which is an active area of laboratory research which has already been applied to the production of real products; however, there had been, until recently, no research efforts into the actual construction of "molecular assemblers". Nonetheless, a 2013 paper by David Leigh's group, published in the journal '' Science'', details a new method of synthesizing a peptide in a sequence-specific manner by using an artificial molecular machine that is guided by a molecular strand. This functions in the same way as a ribosome building proteins by assembling amino acids according to a messenger RNA blueprint. The structure of the machine is based on a rotaxane, which is a molecular ring sliding along a molecular axle. The ring carries a thiolate group, which removes amino acids in sequence from the axle, transferring them to a peptide assembly site. In 2018, the same group published a more advanced version of this concept in which the molecular ring shuttles along a polymeric track to assemble an oligopeptide that can fold into an α-helix that can perform the enantioselective epoxidation of a
chalcone Chalcone is the organic compound C6H5C(O)CH=CHC6H5. It is an α,β-unsaturated ketone. A variety of important biological compounds are known collectively as chalcones or chalconoids. Chemical properties Chalcones have two absorption maxima a ...
derivative (in a way reminiscent to the ribosome assembling an enzyme). In another paper published in ''Science'' in March 2015, chemists at the University of Illinois report a platform that automates the synthesis of 14 classes of small molecules, with thousands of compatible building blocks. In 2017, David Leigh's group reported a molecular robot that could be programmed to construct any one of four different stereoisomers of a molecular product by using a nanomechanical robotic arm to move a molecular substrate between different reactive sites of an artificial molecular machine. An accompanying News and Views article, titled ‘A molecular assembler’, outlined the operation of the molecular robot as effectively a prototypical molecular assembler.


Nanofactories

A nanofactory is a proposed system in which nanomachines (resembling molecular assemblers, or industrial robot arms) would combine reactive molecules via mechanosynthesis to build larger atomically precise parts. These, in turn, would be assembled by positioning mechanisms of assorted sizes to build macroscopic (visible) but still atomically-precise products. A typical nanofactory would fit in a desktop box, in the vision of K. Eric Drexler published in ''Nanosystems: Molecular Machinery, Manufacturing and Computation'' (1992), a notable work of " exploratory engineering". During the 1990s, others have extended the nanofactory concept, including an analysis of nanofactory convergent assembly by Ralph Merkle, a systems design of a replicating nanofactory architecture by J. Storrs Hall, Forrest Bishop's "Universal Assembler", the patented exponential assembly process by Zyvex, and a top-level systems design for a 'primitive nanofactory' by Chris Phoenix (director of research at the Center for Responsible Nanotechnology). All of these nanofactory designs (and more) are summarized in Chapter 4 of ''Kinematic Self-Replicating Machines'' (2004) by Robert Freitas and Ralph Merkle. The Nanofactory Collaboration, founded by Freitas and Merkle in 2000, is a focused, ongoing effort involving 23 researchers from 10 organizations and 4 countries that is developing a practical research agenda specifically aimed at positionally-controlled diamond mechanosynthesis and diamondoid nanofactory development. In 2005, a
computer-animated Computer animation is the process used for digitally generating animations. The more general term computer-generated imagery (CGI) encompasses both static scenes ( still images) and dynamic images (moving images), while computer animation refe ...
short film of the nanofactory concept was produced by John Burch, in collaboration with Drexler. Such visions have been the subject of much debate, on several intellectual levels. No one has discovered an insurmountable problem with the underlying theories and no one has proved that the theories can be translated into practice. However, the debate continues, with some of it being summarized in the molecular nanotechnology article. If nanofactories could be built, severe disruption to the
world economy The world economy or global economy is the economy of all humans of the world, referring to the global economic system, which includes all economic activities which are conducted both within and between nations, including production, consumption, ...
would be one of many possible negative impacts, though it could be argued that this disruption would have little negative effect, if everyone had such nanofactories. Great benefits also would be anticipated. Various works of science fiction have explored these and similar concepts. The potential for such devices was part of the mandate of a major UK study led by mechanical engineering professor Dame
Ann Dowling Dame Ann Patricia Dowling (born 15 July 1952) is a British mechanical engineer who researches combustion, acoustics and vibration, focusing on efficient, low-emission combustion and reduced road vehicle and aircraft noise. Dowling is a Deput ...
.


Self-replication

"Molecular assemblers" have been confused with self-replicating machines. To produce a practical quantity of a desired product, the nanoscale size of a typical science fiction universal molecular assembler requires an extremely large number of such devices. However, a single such theoretical molecular assembler might be programmed to self-replicate, constructing many copies of itself. This would allow an exponential rate of production. Then, after sufficient quantities of the molecular assemblers were available, they would then be re-programmed for production of the desired product. However, if self-replication of molecular assemblers were not restrained then it might lead to competition with naturally occurring organisms. This has been called ecophagy or the grey goo problem. One method of building molecular assemblers is to mimic evolutionary processes employed by biological systems. Biological evolution proceeds by random variation combined with culling of the less-successful variants and reproduction of the more-successful variants. Production of complex molecular assemblers might be evolved from simpler systems since "A
complex system A complex system is a system composed of many components which may interact with each other. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication ...
that works is invariably found to have evolved from a simple system that worked. . . . A complex system designed from scratch never works and can not be patched up to make it work. You have to start over, beginning with a system that works." Gall, John, (1986) Systemantics: How Systems Really Work and How They Fail, 2nd ed. Ann Arbor, MI : The General Systemantics Press. However, most published safety guidelines include "recommendations against developing ... replicator designs which permit surviving mutation or undergoing evolution". Most assembler designs keep the "source code" external to the physical assembler. At each step of a manufacturing process, that step is read from an ordinary computer file and "broadcast" to all the assemblers. If any assembler gets out of range of that computer, or when the link between that computer and the assemblers is broken, or when that computer is unplugged, the assemblers stop replicating. Such a "broadcast architecture" is one of the safety features recommended by the "Foresight Guidelines on Molecular Nanotechnology", and a map of the 137-dimensional replicator design space recently published by Freitas and Merkle provides numerous practical methods by which replicators can be safely controlled by good design.


Drexler and Smalley debate

One of the most outspoken critics of some concepts of "molecular assemblers" was Professor Richard Smalley (1943–2005) who won the Nobel prize for his contributions to the field of
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal o ...
. Smalley believed that such assemblers were not physically possible and introduced scientific objections to them. His two principal technical objections were termed the "fat fingers problem" and the "sticky fingers problem". He believed these would exclude the possibility of "molecular assemblers" that worked by precision picking and placing of individual atoms. Drexler and coworkers responded to these two issues in a 2001 publication. Smalley also believed that Drexler's speculations about apocalyptic dangers of self-replicating machines that have been equated with "molecular assemblers" would threaten the public support for development of nanotechnology. To address the debate between Drexler and Smalley regarding molecular assemblers '' Chemical & Engineering News'' published a point-counterpoint consisting of an exchange of letters that addressed the issues.


Regulation

Speculation on the power of systems that have been called "molecular assemblers" has sparked a wider political discussion on the implication of nanotechnology. This is in part due to the fact that nanotechnology is a very broad term and could include "molecular assemblers". Discussion of the possible implications of fantastic molecular assemblers has prompted calls for regulation of current and future nanotechnology. There are very real concerns with the potential health and ecological impact of nanotechnology that is being integrated in manufactured products.
Greenpeace Greenpeace is an independent global campaigning network, founded in Canada in 1971 by Irving Stowe and Dorothy Stowe, immigrant environmental activists from the United States. Greenpeace states its goal is to "ensure the ability of the Earth t ...
for instance commissioned a report concerning nanotechnology in which they express concern into the toxicity of nanomaterials that have been introduced in the environment. However, it makes only passing references to "assembler" technology. The UK Royal Society and
Royal Academy of Engineering The Royal Academy of Engineering (RAEng) is the United Kingdom's national academy of engineering. The Academy was founded in June 1976 as the Fellowship of Engineering with support from Prince Philip, Duke of Edinburgh, who became the first senior ...
also commissioned a report entitled "Nanoscience and nanotechnologies: opportunities and uncertainties" regarding the larger social and ecological implications of nanotechnology. This report does not discuss the threat posed by potential so-called "molecular assemblers".


Formal scientific review

In 2006, the
U.S. National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the Natio ...
released the report of a study of molecular manufacturing as part of a longer report, ''A Matter of Size: Triennial Review of the National Nanotechnology Initiative'' The study committee reviewed the technical content of ''Nanosystems'', and in its conclusion states that no current theoretical analysis can be considered definitive regarding several questions of potential system performance, and that optimal paths for implementing high-performance systems cannot be predicted with confidence. It recommends experimental research to advance knowledge in this area: :"Although theoretical calculations can be made today, the eventually attainable range of chemical reaction cycles, error rates, speed of operation, and thermodynamic efficiencies of such bottom-up manufacturing systems cannot be reliably predicted at this time. Thus, the eventually attainable perfection and complexity of manufactured products, while they can be calculated in theory, cannot be predicted with confidence. Finally, the optimum research paths that might lead to systems which greatly exceed the thermodynamic efficiencies and other capabilities of biological systems cannot be reliably predicted at this time. Research funding that is based on the ability of investigators to produce experimental demonstrations that link to abstract models and guide long-term vision is most appropriate to achieve this goal."


Grey goo

One potential scenario that has been envisioned is out-of-control self-replicating molecular assemblers in the form of grey goo which consumes carbon to continue its replication. If unchecked, such mechanical replication could potentially consume whole ecoregions or the whole Earth ( ecophagy), or it could simply outcompete natural lifeforms for necessary resources such as carbon,
ATP ATP may refer to: Companies and organizations * Association of Tennis Professionals, men's professional tennis governing body * American Technical Publishers, employee-owned publishing company * ', a Danish pension * Armenia Tree Project, non ...
, or UV light (which some nanomotor examples run on). However, the ecophagy and 'grey goo' scenarios, like synthetic molecular assemblers, are based upon still-hypothetical technologies that have not yet been demonstrated experimentally.


See also

*
Nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal o ...
*
Molecular machine A molecular machine, nanite, or nanomachine is a molecular component that produces quasi-mechanical movements (output) in response to specific stimuli (input). In cellular biology, macromolecular machines frequently perform tasks essential for l ...
* Bioethics * Biosafety * Biosecurity * Biotechnology * Ecocide * Ecophagy *
Santa Claus machine A Santa Claus machine, named after the folkloric Santa Claus, is a hypothetical machine that is capable of creating any required object or structure out of any given material. It is most often referenced by futurists and science fiction writers w ...
*
3D printing 3D printing or additive manufacturing is the Manufacturing, construction of a three-dimensional object from a computer-aided design, CAD model or a digital 3D modeling, 3D model. It can be done in a variety of processes in which material is ...
* Nanotechnology in fiction


References


External links


Molecular Dynamics Studio (2016)
free open-source multi-scale modeling and simulation program for nano-composites with special support for structural DNA nanotechnology (originally Nanoengineer-1 by Nanorex)
Nano-Hive: Nanospace Simulator (2006)
free software for modeling nanotech entities

of molecular manufacturing technologies
Center for Responsible Nanotechnology (2008)Molecular Assembler website (2008)Rage Against the (Green) Machine (2003)
in Wired
Government launches nano study
UK EducationGuardian, 11 June 2003
Unraveling the Big Debate over Small Machines (2004)
from BetterHumans.com

by Ralph Merkle

— online technical book: first comprehensive survey of molecular assemblers (2004) by Robert Freitas and Ralph Merkle

(2003)

(2006)
Nanofactory technologyIntegrated Nanosystems for Atomically Precise Manufacturing
United States Department of Energy Workshop – August 5–6, 2015 {{DEFAULTSORT:Molecular Assembler Nanotechnology Molecular machines Self-replication