Arc welding is a
welding
Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melting, melt the parts together and allow them to cool, causing Fusion welding, fusion. Co ...
process that is used to join
metal
A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
to metal by using
electricity
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
to create enough heat to melt metal, and the melted metals, when cool, result in a joining of the metals. It is a type of welding that uses a
welding power supply to create an
electric arc
An electric arc (or arc discharge) is an electrical breakdown of a gas that produces a prolonged electrical discharge. The electric current, current through a normally Electrical conductance, nonconductive medium such as air produces a plasma ( ...
between a metal stick ("
electrode
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
") and the base material to melt the metals at the point of contact. Arc welding power supplies can deliver either
direct
Direct may refer to:
Mathematics
* Directed set, in order theory
* Direct limit of (pre), sheaves
* Direct sum of modules, a construction in abstract algebra which combines several vector spaces
Computing
* Direct access (disambiguation), ...
(DC) or
alternating (AC) current to the work, while consumable or non-consumable electrodes are used.
The welding area is usually protected by some type of
shielding gas (e.g. an inert gas), vapor, or slag. Arc welding processes may be manual, semi-automatic, or fully automated. First developed in the late part of the 19th century, arc welding became commercially important in shipbuilding during the Second World War. Today it remains an important process for the fabrication of steel structures and vehicles.
Power supplies

To supply the electrical energy necessary for arc welding processes, a number of different power supplies can be used. The most common classification is constant
current power supplies and constant
voltage
Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
power supplies. In arc welding, the voltage is directly related to the length of the arc, and the current is related to the amount of heat input. Constant current power supplies are most often used for manual welding processes such as gas tungsten arc welding and shielded metal arc welding, because they maintain a relatively constant current even as the voltage varies. This is important because in manual welding, it can be difficult to hold the electrode perfectly steady, and as a result, the arc length and thus voltage tend to fluctuate. Constant voltage power supplies hold the voltage constant and vary the current, and as a result, are most often used for automated welding processes such as gas metal arc welding, flux cored arc welding, and submerged arc welding. In these processes, arc length is kept constant, since any fluctuation in the distance between the wire and the base material is quickly rectified by a large change in current. For example, if the wire and the base material get too close, the current will rapidly increase, which in turn causes the heat to increase and the tip of the wire to melt, returning it to its original separation distance. Under normal arc length conditions, a constant current power supply with a stick electrode operates at about 20 volts.
The direction of current used in arc welding also plays an important role in welding. Consumable electrode processes such as shielded metal arc welding and gas metal arc welding generally use direct current, but the electrode can be charged either positively or negatively. In general, the positively charged
anode
An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devic ...
will have a greater heat concentration (around 60%). "Note that for stick welding in general, DC+ polarity is most commonly used. It produces a good bead profile with a higher level of penetration. DC− polarity results in less penetration and a higher electrode melt-off rate. It is sometimes used, for example, on thin sheet metal in an attempt to prevent burn-through." "With few exceptions, electrode-positive (reversed polarity) results in deeper penetration. Electrode-negative (straight polarity) results in faster melt-off of the electrode and, therefore, faster deposition rate." Non-consumable electrode processes, such as gas tungsten arc welding, can use either type of direct current (DC), as well as alternating current (AC). With direct current however, because the electrode only creates the arc and does not provide filler material, a positively charged electrode causes shallow welds, while a negatively charged electrode makes deeper welds. Alternating current rapidly moves between these two, resulting in medium-penetration welds. One disadvantage of AC, the fact that the arc must be re-ignited after every zero crossing, has been addressed with the invention of special power units that produce a
square wave Square wave may refer to:
*Square wave (waveform)
A square wave is a non-sinusoidal waveform, non-sinusoidal periodic waveform in which the amplitude alternates at a steady frequency between fixed minimum and maximum values, with the same ...
pattern instead of the normal
sine wave
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic function, periodic wave whose waveform (shape) is the trigonometric function, trigonometric sine, sine function. In mechanics, as a linear motion over time, this is ''simple ...
, eliminating low-voltage time after the zero crossings and minimizing the effects of the problem.
Duty cycle
A duty cycle or power cycle is the fraction of one period in which a signal or system is active. Duty cycle is commonly expressed as a percentage or a ratio. A period is the time it takes for a signal to complete an on-and-off cycle. As a for ...
is a welding equipment specification which defines the number of minutes, within a 10-minute period, during which a given arc welder can safely be used. For example, an 80 A welder with a 60% duty cycle must be "rested" for at least 4 minutes after 6 minutes of continuous welding. Failure to observe duty cycle limitations could damage the welder. Commercial- or professional-grade welders typically have a 100% duty cycle.
Consumable electrode methods
One of the most common types of arc welding is
shielded metal arc welding (SMAW), which is also known as manual metal arc welding (MMAW) or stick welding. An electric current is used to strike an arc between the base material and a consumable electrode rod or ''stick''. The electrode rod is made of a material that is compatible with the base material being welded and is covered with a flux that gives off vapors that serve as a shielding gas and provide a layer of slag, both of which protect the weld area from atmospheric contamination. The electrode core itself acts as filler material, making a separate filler unnecessary. The process is very versatile, requiring little operator training and inexpensive equipment. However, weld times are rather slow, since the consumable electrodes must be frequently replaced and because slag, the residue from the flux, must be chipped away after welding. Furthermore, the process is generally limited to welding ferrous materials, though specialty electrodes have made possible the welding of
cast iron
Cast iron is a class of iron–carbon alloys with a carbon content of more than 2% and silicon content around 1–3%. Its usefulness derives from its relatively low melting temperature. The alloying elements determine the form in which its car ...
,
nickel
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
,
aluminum
Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
,
copper
Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
and other metals. The versatility of the method makes it popular in a number of applications including repair work and construction.
Gas metal arc welding (GMAW), commonly called ''MIG'' (for ''metal/inert-gas''), is a semi-automatic or automatic welding process with a continuously fed consumable wire acting as both electrode and filler metal, along with an inert or semi-inert shielding gas flowed around the wire to protect the weld site from contamination. Constant voltage, direct current power source is most commonly used with GMAW, but constant
current alternating current are used as well. With continuously fed filler electrodes, GMAW offers relatively high welding speeds; however the more complicated equipment reduces convenience and versatility in comparison to the SMAW process. Originally developed for welding
aluminum
Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
and other non-ferrous materials in the 1940s, GMAW was soon economically applied to
steel
Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to steel's high Young's modulus, elastic modulus, Yield (engineering), yield strength, Fracture, fracture strength a ...
s. Today, GMAW is commonly used in industries such as the
automobile industry for its quality, versatility and speed. Because of the need to maintain a stable shroud of shielding gas around the weld site, it can be problematic to use the GMAW process in areas of high air movement such as outdoors.
The automation of arc welding processes has significantly advanced with the widespread adoption of industrial robots. Robotic arc welding typically utilizes constant voltage power supplies and is most commonly employed with Gas Metal Arc Welding (GMAW) due to its continuous wire feed and high deposition rates. Robots offer precise control over parameters such as travel speed, arc length, and torch angle, leading to highly consistent and repeatable welds. This consistency reduces human error, improves weld quality, and increases production efficiency, making robotic arc welding particularly beneficial for high-volume manufacturing and applications requiring stringent quality standards. While the initial investment in robotic systems can be substantial, they offer long-term benefits in terms of productivity, safety (by removing human operators from hazardous environments), and reduced material waste.
Flux-cored arc welding (FCAW) is a variation of the GMAW technique. FCAW wire is actually a fine metal tube filled with powdered flux materials. An externally supplied shielding gas is sometimes used, but often the flux itself is relied upon to generate the necessary protection from the atmosphere. The process is widely used in construction because of its high welding speed and portability.
Submerged arc welding (SAW) is a high-productivity welding process in which the arc is struck beneath a covering layer of granular flux. This increases arc quality, since contaminants in the atmosphere are blocked by the flux. The slag that forms on the weld generally comes off by itself and, combined with the use of a continuous wire feed, the weld deposition rate is high. Working conditions are much improved over other arc welding processes since the flux hides the arc and no smoke is produced. The process is commonly used in industry, especially for large products. As the arc is not visible, it is typically automated. SAW is only possible in the 1F (flat fillet), 2F (horizontal fillet), and 1G (flat groove) positions.
Non-consumable electrode methods
Gas tungsten arc welding
Gas tungsten arc welding (GTAW, also known as tungsten inert gas welding or TIG, tungsten argon gas welding or TAG, and heliarc welding when helium is used) is an arc welding process that uses a non-consumable tungsten electrode to produce the ...
(GTAW), or ''tungsten/inert-gas'' (TIG) welding, is a manual welding process that uses a non-consumable electrode made of
tungsten
Tungsten (also called wolfram) is a chemical element; it has symbol W and atomic number 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first ...
, an inert or semi-inert gas mixture, and a separate filler material. Especially useful for welding thin materials, this method is characterized by a stable arc and high quality welds, but it requires significant operator skill and can only be accomplished at relatively low speeds. It can be used on nearly all weldable metals, though it is most often applied to
stainless steel
Stainless steel, also known as inox, corrosion-resistant steel (CRES), or rustless steel, is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Stainless steel's resistance to corrosion comes from its chromi ...
and light metals. It is often used when quality welds are extremely important, such as in
bicycle
A bicycle, also called a pedal cycle, bike, push-bike or cycle, is a human-powered transport, human-powered or motorized bicycle, motor-assisted, bicycle pedal, pedal-driven, single-track vehicle, with two bicycle wheel, wheels attached to a ...
, aircraft and marine applications.
A related process,
plasma arc welding, also uses a tungsten electrode but uses
plasma gas to make the arc. The arc is more concentrated than the GTAW arc, making transverse control more critical and thus generally restricting the technique to a mechanized process. Because of its stable current, the method can be used on a wider range of material thicknesses than can the GTAW process and is much faster. It can be applied to all of the same materials as GTAW except
magnesium
Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
; automated welding of stainless steel is one important application of the process. A variation of the process is
plasma cutting
Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although other ...
, an efficient steel cutting process.
Other arc welding processes include
atomic hydrogen welding,
carbon arc welding,
electroslag welding,
electrogas welding, and
stud arc welding.
Corrosion issues
Some materials, notably high-strength steels, aluminum, and titanium alloys, are susceptible to
hydrogen embrittlement
Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can Permeation, permeate solid metals. O ...
. If the electrodes used for welding contain traces of moisture, the water decomposes in the heat of the arc and the liberated hydrogen enters the lattice of the material, causing its brittleness. Stick electrodes for such materials, with special low-hydrogen coating, are delivered in sealed moisture-proof packaging. New electrodes can be used straight from the can, but when moisture absorption may be suspected, they have to be dried by baking (usually at ) in a drying oven. Flux used has to be kept dry as well.
Some
austenitic stainless steel
Stainless steel, also known as inox, corrosion-resistant steel (CRES), or rustless steel, is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Stainless steel's resistance to corrosion comes from its chromi ...
s and
nickel
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
-based
alloy
An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
s are prone to
intergranular corrosion. When subjected to temperatures around for too long a time,
chromium
Chromium is a chemical element; it has Symbol (chemistry), symbol Cr and atomic number 24. It is the first element in Group 6 element, group 6. It is a steely-grey, Luster (mineralogy), lustrous, hard, and brittle transition metal.
Chromium ...
reacts with
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
in the material, forming
chromium carbide and depleting the crystal edges of chromium, impairing their corrosion resistance in a process called
sensitization
Sensitization is a non-associative learning process in which repeated administration of a stimulation, stimulus results in the progressive amplification of a response. Sensitization often is characterized by an enhancement of response to a whole ...
. Such sensitized steel undergoes corrosion in the areas near the welds where the temperature-time was favorable for forming the carbide. This kind of corrosion is often termed weld decay.
Knifeline attack (KLA) is another kind of corrosion affecting welds, impacting steels stabilized by
niobium
Niobium is a chemical element; it has chemical symbol, symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and Ductility, ductile transition metal. Pure niobium has a Mohs scale of mineral hardness, Mohs h ...
. Niobium and
niobium carbide dissolves in steel at very high temperatures. At some cooling regimes, niobium carbide does not precipitate, and the steel then behaves like unstabilized steel, forming chromium carbide instead. This affects only a thin zone several millimeters wide in the very vicinity of the weld, making it difficult to spot and increasing the corrosion speed. Structures made of such steels have to be heated in a whole to about , when the chromium carbide dissolves and niobium carbide forms. The cooling rate after this treatment is not important.
Filler metal (electrode material) improperly chosen for the environmental conditions can make them
corrosion
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
-sensitive as well. There are also issues of
galvanic corrosion
Galvanic corrosion (also called bimetallic corrosion or dissimilar metal corrosion) is an electrochemical process in which one metal corrodes preferentially when it is in electrical contact with another, different metal, when both in the prese ...
if the electrode composition is sufficiently dissimilar to the materials welded, or the materials are dissimilar themselves. Even between different grades of nickel-based stainless steels, corrosion of
welded joints can be severe, despite that they rarely undergo galvanic corrosion when mechanically joined.
Safety issues
Welding can be a dangerous and unhealthy practice without the proper precautions; however, with the use of new technology and proper protection the risks of injury or death associated with welding can be greatly reduced.
Heat, fire, and explosion hazard
Because many common welding procedures involve an open electric arc or flame, the risk of burns from heat and
sparks is significant. To prevent them,
welder
A welder is a person or equipment that fuses materials together. The term welder refers to the operator, the machine is referred to as the welding power supply. The materials to be joined can be metals (such as steel, aluminum, brass, stainles ...
s wear
protective clothing in the form of heavy
leather
Leather is a strong, flexible and durable material obtained from the tanning (leather), tanning, or chemical treatment, of animal skins and hides to prevent decay. The most common leathers come from cattle, sheep, goats, equine animals, buffal ...
glove
A glove is a garment covering the hand, with separate sheaths or openings for each finger including the thumb. Gloves protect and comfort hands against cold or heat, damage by friction, abrasion or chemicals, and disease; or in turn to provide a ...
s and protective long sleeve jackets to avoid exposure to extreme heat, flames, and sparks. The use of compressed gases and flames in many welding processes also pose an explosion and fire risk; some common precautions include limiting the amount of oxygen in the air and keeping combustible materials away from the workplace.
Eye damage

Exposure to the brightness of the weld area leads to a condition called
arc eye in which
ultraviolet light
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of th ...
causes inflammation of the
cornea
The cornea is the transparency (optics), transparent front part of the eyeball which covers the Iris (anatomy), iris, pupil, and Anterior chamber of eyeball, anterior chamber. Along with the anterior chamber and Lens (anatomy), lens, the cornea ...
and can burn the
retina
The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
s of the eyes.
Welding goggles and
helmets
A helmet is a form of protective gear worn to protect the Human head, head. More specifically, a helmet complements the skull in protecting the human brain. Ceremonial or symbolic helmets (e.g., a Custodian helmet, policeman's helmet in the Unite ...
with dark face plates—much darker than those in
sunglasses or
oxy-fuel goggles—are worn to prevent this exposure. In recent years, new helmet models have been produced featuring a face plate which automatically self-darkens electronically. To protect bystanders, transparent welding curtains often surround the welding area. These curtains, made of a
polyvinyl chloride
Polyvinyl chloride (alternatively: poly(vinyl chloride), colloquial: vinyl or polyvinyl; abbreviated: PVC) is the world's third-most widely produced synthetic polymer of plastic (after polyethylene and polypropylene). About 40 million tons of ...
plastic film, shield nearby workers from exposure to the UV light from the electric arc.
Inhaled matter
Welders are also often exposed to dangerous gases and
particulate
Particulate matter (PM) or particulates are microscopic particles of solid or liquid matter suspended in the air. An ''aerosol'' is a mixture of particulates and air, as opposed to the particulate matter alone, though it is sometimes define ...
matter. Processes like flux-cored arc welding and shielded metal arc welding produce
smoke
Smoke is an aerosol (a suspension of airborne particulates and gases) emitted when a material undergoes combustion or pyrolysis, together with the quantity of air that is entrained or otherwise mixed into the mass. It is commonly an unwante ...
containing particles of various types of
oxide
An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
s. The size of the particles in question tends to influence the
toxic
Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
ity of the fumes, with smaller particles presenting a greater danger. Additionally, many processes produce various gases (most commonly carbon dioxide and
ozone
Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
, but others as well) that can prove dangerous if ventilation is inadequate.
Electrical safety
While the open-circuit voltage of an arc welding machine may be only a few tens of volts up to about 120 volts, even these low voltages can present a hazard of electric shock for the operators. Locations such as ship's hulls, storage tanks, metal structural steel, or in wet areas are usually at earth ground potential and operators may be standing or resting on these surfaces during operating of the electric arc. Welding machines operating off AC power distribution systems must isolate the arc circuit from earth ground to prevent insulation faults in the machine from exposing operators to high voltage. The return clamp of the welding machine is located near to the work area, to reduce the risk of stray current traveling a long way to create heating hazards or electric shock exposure, or to cause damage to sensitive electronic devices. Welding operators are careful to install return clamps so that welding current cannot pass through the bearings of electric motors, conveyor rollers, or other rotating components, which would cause damage to bearings. Welding on electrical buswork connected to
transformer
In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple Electrical network, circuits. A varying current in any coil of the transformer produces ...
s presents a danger of the low welding voltage being "stepped up" to much higher voltages, so extra grounding cables may be required.
Interference with pacemakers
Certain welding machines which use a high frequency alternating current component have been found to affect pacemaker operation when within 2 meters of the power unit and 1 meter of the weld site.
History

While examples of
forge welding
Forge welding (FOW), also called fire welding, is a solid-state welding process that joins two pieces of metal by heating them to a high temperature and then hammering them together. It may also consist of heating and forcing the metals together ...
go back to the
Bronze Age
The Bronze Age () was a historical period characterised principally by the use of bronze tools and the development of complex urban societies, as well as the adoption of writing in some areas. The Bronze Age is the middle principal period of ...
and the
Iron Age
The Iron Age () is the final epoch of the three historical Metal Ages, after the Chalcolithic and Bronze Age. It has also been considered as the final age of the three-age division starting with prehistory (before recorded history) and progre ...
, arc welding did not come into practice until much later.
In 1800,
Humphry Davy
Sir Humphry Davy, 1st Baronet (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several Chemical element, e ...
discovered the short pulsed electric arcs.
Independently, a Russian physicist named
Vasily Petrov discovered the continuous electric arc in 1802
and subsequently proposed its possible practical applications, including welding. Arc welding was first developed when
Nikolai Benardos presented arc welding of metals using a carbon electrode at the
International Exposition of Electricity, Paris in 1881, which was patented together with
Stanisław Olszewski in 1887. In the same year, French electrical inventor
Auguste de Méritens also invented a carbon arc welding method, patented in 1881, which was successfully used for welding
lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
in the manufacture of
lead–acid batteries. The advances in arc welding continued with the invention of metal electrodes in the late 19th century by a Russian,
Nikolai Slavyanov (1888), and an American,
C. L. Coffin. Around 1900, A. P. Strohmenger released in
Britain
Britain most often refers to:
* Great Britain, a large island comprising the countries of England, Scotland and Wales
* The United Kingdom of Great Britain and Northern Ireland, a sovereign state in Europe comprising Great Britain and the north-eas ...
a coated metal electrode which gave a more stable arc. In 1905, Russian scientist
Vladimir Mitkevich proposed the usage of three-phase electric arc for welding. In 1919, alternating current welding was invented by C. J. Holslag but did not become popular for another decade.
Competing welding processes such as
resistance welding and
oxyfuel welding were developed during this time as well; but both, especially the latter, faced stiff competition from arc welding especially after metal coverings (known as
flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phe ...
) for the electrode, to stabilize the arc and shield the base material from impurities, continued to be developed.

During
World War I
World War I or the First World War (28 July 1914 – 11 November 1918), also known as the Great War, was a World war, global conflict between two coalitions: the Allies of World War I, Allies (or Entente) and the Central Powers. Fighting to ...
, welding started to be used in
shipbuilding
Shipbuilding is the construction of ships and other Watercraft, floating vessels. In modern times, it normally takes place in a specialized facility known as a shipyard. Shipbuilders, also called shipwrights, follow a specialized occupation th ...
in Great Britain in place of
rivet
A rivet is a permanent mechanical fastener. Before being installed, a rivet consists of a smooth cylinder (geometry), cylindrical shaft with a head on one end. The end opposite the head is called the ''tail''. On installation, the deformed e ...
ed steel plates. The Americans also became more accepting of the new technology when the process allowed them to repair their ships quickly after a
German attack in the
New York Harbor
New York Harbor is a bay that covers all of the Upper Bay. It is at the mouth of the Hudson River near the East River tidal estuary on the East Coast of the United States.
New York Harbor is generally synonymous with Upper New York Bay, ...
at the beginning of the war. Arc welding was first applied to aircraft during the war as well, and some German airplane fuselages were constructed using this process.
In 1919, the British shipbuilder
Cammell Laird
Cammell Laird is a British shipbuilding company. It was formed from the merger of Laird Brothers of Birkenhead and Johnson Cammell & Co of Sheffield at the turn of the twentieth century. The company also built railway rolling stock until 1929, ...
started construction of a merchant ship, the ''Fullagar'', with an entirely welded hull; she was launched in 1921.
During the 1920s, major advances were made in welding technology, including the 1920 introduction of automatic welding in which electrode wire was continuously fed. Shielding gas became a subject receiving much attention as scientists attempted to protect welds from the effects of oxygen and nitrogen in the atmosphere.
Porosity
Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
and
brittleness
A material is brittle if, when subjected to stress (physics), stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of h ...
were the primary problems and the solutions that developed included the use of
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
,
argon
Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
, and
helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
as welding atmospheres. During the following decade, further advances allowed for the welding of reactive metals such as
aluminum
Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
and
magnesium
Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
. This, in conjunction with developments in automatic welding, alternating current, and fluxes fed a major expansion of arc welding during the 1930s and then during
World War II
World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
.
During the middle of the century, many new welding methods were invented.
Submerged arc welding was invented in 1930 and continues to be popular today. In 1932, a Russian,
Konstantin Khrenov successfully implemented the first
underwater electric arc welding.
Gas tungsten arc welding
Gas tungsten arc welding (GTAW, also known as tungsten inert gas welding or TIG, tungsten argon gas welding or TAG, and heliarc welding when helium is used) is an arc welding process that uses a non-consumable tungsten electrode to produce the ...
, after decades of development, was finally perfected in 1941 and
gas metal arc welding followed in 1948, allowing for fast welding of non-
ferrous
In chemistry, iron(II) refers to the chemical element, element iron in its +2 oxidation number, oxidation state. The adjective ''ferrous'' or the prefix ''ferro-'' is often used to specify such compounds, as in ''ferrous chloride'' for iron(II ...
materials but requiring expensive shielding gases. Using a consumable electrode and a
carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
atmosphere as a shielding gas, it quickly became the most popular metal arc welding process. In 1957, the
flux-cored arc welding process debuted in which the self-shielded wire electrode could be used with automatic equipment, resulting in greatly increased welding speeds. In that same year,
plasma arc welding was invented.
Electroslag welding was released in 1958 and was followed by its cousin,
electrogas welding, in 1961.
See also
*
List of welding processes
*
Gas metal arc ("MIG"/"MAG") welding
*
Oxy-fuel welding
*
Tungsten inert gas ("TIG") welding
*
*
*
References
Notes
Sources
*
*
*
*
Further reading
*
ASM International (2003). ''Trends in Welding Research''. Materials Park,
Ohio
Ohio ( ) is a U.S. state, state in the Midwestern United States, Midwestern region of the United States. It borders Lake Erie to the north, Pennsylvania to the east, West Virginia to the southeast, Kentucky to the southwest, Indiana to the ...
: ASM International.
*Blunt, Jane and Nigel C. Balchin (2002). ''Health and Safety in Welding and Allied Processes''.
Cambridge
Cambridge ( ) is a List of cities in the United Kingdom, city and non-metropolitan district in the county of Cambridgeshire, England. It is the county town of Cambridgeshire and is located on the River Cam, north of London. As of the 2021 Unit ...
: Woodhead. .
*Hicks, John (1999). ''Welded Joint Design''.
New York: Industrial Press. .
External links
Arc Flash Awarenessvideo (25:39) from U.S. National Institute for Occupational Safety and Health
{{DEFAULTSORT:Arc Welding
Electric arcs
Russian inventions
Articles containing video clips