
In
signal processing
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, Scalar potential, potential fields, Seismic tomograph ...
, apodization (from
Greek
Greek may refer to:
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group
*Greek language, a branch of the Indo-European language family
**Proto-Greek language, the assumed last common ancestor of all kno ...
"removing the foot") is the modification of the shape of a
mathematical function
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. ...
. The function may represent an electrical signal, an optical transmission, or a mechanical structure. In
optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
, it is primarily used to remove
Airy disk
In optics, the Airy disk (or Airy disc) and Airy pattern are descriptions of the best-focus (optics), focused Point source#Light, spot of light that a perfect lens (optics), lens with a circular aperture can make, limited by the diffraction of ...
s caused by
diffraction
Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the Wave propagation ...
around an intensity peak, improving the focus.
Apodization in electronics
Apodization in signal processing
The term apodization is used frequently in publications on
Fourier-transform infrared (FTIR) signal processing. An example of apodization is the use of the
Hann window in the
fast Fourier transform
A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in ...
analyzer to smooth the discontinuities at the beginning and end of the sampled time record.
Apodization in digital audio
An apodizing filter can be used in
digital audio processing instead of the more common brick-wall filters, in order to reduce the pre- and post-
ringing that the latter introduces.
Apodization in mass spectrometry
During oscillation within an
Orbitrap
In mass spectrometry, Orbitrap is an ion trap mass analyzer consisting of an outer barrel-like electrode and a coaxial inner spindle-like electrode that traps ions in an orbital motion around the spindle. The image current from the trapped ions i ...
, ion transient signal may not be stable until the ions settle into their oscillations. Toward the end, subtle ion collisions have added up to cause noticeable dephasing. This presents a problem for the Fourier transformation, as it averages the oscillatory signal across the length of the time-domain measurement. The software allows “apodization”, the removal of the front and back section of the transient signal from consideration in the FT calculation. Thus, apodization improves the resolution of the resulting mass spectrum. Another way to improve the quality of the transient is to wait to collect data until ions have settled into stable oscillatory motion within the trap.
Apodization in nuclear magnetic resonance spectroscopy
Apodization is applied to
NMR
Nuclear magnetic resonance (NMR) is a physical phenomenon in which atomic nucleus, nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near and far field, near field) and respond by producing ...
signals before discrete
Fourier Transformation. Typically, NMR signals are truncated due to time constraints (indirect dimension) or to obtain a higher signal-to-noise ratio. In order to reduce truncation artifacts, the signals are subjected to apodization with different types of
window function
In signal processing and statistics, a window function (also known as an apodization function or tapering function) is a mathematical function that is zero-valued outside of some chosen interval. Typically, window functions are symmetric around ...
s.
Apodization in optics
In optical design jargon, an ''apodization'' function is used to purposely change the input intensity profile of an
optical system, and it may be a complicated function to tailor the system to certain properties. Usually, it refers to a non-uniform illumination or transmission profile that approaches zero at the edges.
Apodization in imaging
Since side lobes of the Airy disk are responsible for degrading the image, techniques for suppressing them are utilized. If the imaging beam has Gaussian distribution, when the truncation ratio (the ratio of the diameter of the Gaussian beam to the diameter of the truncating aperture) is set to 1, the side-lobes become negligible and the beam profile becomes purely Gaussian.
In
medical ultrasonography
Medical ultrasound includes Medical diagnosis, diagnostic techniques (mainly medical imaging, imaging) using ultrasound, as well as therapeutic ultrasound, therapeutic applications of ultrasound. In diagnosis, it is used to create an image of ...
, the effect of
grating lobes can be reduced by activating
ultrasonic transducer
Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert signal (electrical engineering), ...
elements using variable voltages in apodization process.
Apodization in photography
Most camera lenses contain
diaphragms which decrease the amount of light coming into the camera. These are not strictly an example of apodization, since the diaphragm does not produce a smooth transition to zero intensity, nor does it provide shaping of the intensity profile (beyond the obvious all-or-nothing, "top hat" transmission of its aperture).
Some lenses use other methods to reduce the amount of light let in. For example, the Minolta/Sony STF 135mm f/2.8 T4.5 lens however, has a special design introduced in 1999, which accomplishes this by utilizing a concave neutral-gray tinted lens element as an apodization filter, thereby producing a pleasant
bokeh. The same optical effect can be achieved by combining
depth-of-field bracketing with
multi exposure, as implemented in the
Minolta Maxxum 7
The Minolta A-mount camera system was a line of photographic equipment from Minolta introduced in 1985 with the world's first integrated autofocus system in the camera body with interchangeable lenses. The system used a lens mount called A-mo ...
's
STF function. In 2014,
Fujifilm
, trading as , or simply Fuji, is a Japanese Multinational corporation, multinational Conglomerate (company), conglomerate headquartered in Tokyo, Japan, operating in the areas of photography, optics, Office supplies, office and Biomedical engine ...
announced a lens utilizing a similar apodization filter in the
Fujinon XF 56mm F1.2 R APD lens. In 2017,
Sony
is a Japanese multinational conglomerate (company), conglomerate headquartered at Sony City in Minato, Tokyo, Japan. The Sony Group encompasses various businesses, including Sony Corporation (electronics), Sony Semiconductor Solutions (i ...
introduced the
E-mount full-frame lens
Sony FE 100mm F2.8 STF GM OSS (
SEL-100F28GM) based on the same optical
Smooth Trans Focus principle.
Simulation of a
Gaussian laser beam input profile is also an example of apodization.
Photon sieves provide a relatively easy way to achieve tailored optical apodization.
Apodization in astronomy
Apodization is used in telescope optics in order to improve the dynamic range of the image. For example, stars with low intensity in the close vicinity of very bright stars can be made visible using this technique, and even images of planets can be obtained when otherwise obscured by the bright atmosphere of the star they orbit.
[{{cite book, author=E. Hecht, year=1987, title=Optics, edition=2nd, publisher=Addison Wesley, isbn=978-0-201-11609-0 Section 11.3.3.]Planet hunters no longer blinded by the light.
spacefellowship.com Note: this article includes several images of such a phase plate Generally, apodization reduces the resolution of an optical image; however because it reduces diffraction edge effects, it can actually enhance certain small details. In fact, the notion of resolution, as it is commonly defined with the Rayleigh criterion, is in this case partially irrelevant. One has to understand that the image formed in the focal plane of a lens (or a mirror) is modeled through the Fresnel diffraction
In optics, the Fresnel diffraction equation for near-field diffraction is an approximation of the Kirchhoff's diffraction formula, Kirchhoff–Fresnel diffraction that can be applied to the propagation of waves in the near and far field, near fi ...
formalism. The classical diffraction pattern, the Airy disk
In optics, the Airy disk (or Airy disc) and Airy pattern are descriptions of the best-focus (optics), focused Point source#Light, spot of light that a perfect lens (optics), lens with a circular aperture can make, limited by the diffraction of ...
, is connected to a circular pupil, without any obstruction, and with a uniform transmission. Any change in the shape of the pupil (for example a square instead of a circle), or its transmission, results in an alteration in the associated diffraction pattern.
See also
* Apodization function
References
Signal processing