Antiarrhythmic agents, also known as cardiac dysrhythmia medications, are a class of
drug
A drug is any chemical substance other than a nutrient or an essential dietary ingredient, which, when administered to a living organism, produces a biological effect. Consumption of drugs can be via insufflation (medicine), inhalation, drug i ...
s that are used to suppress abnormally fast rhythms (
tachycardia
Tachycardia, also called tachyarrhythmia, is a heart rate that exceeds the normal resting rate. In general, a resting heart rate over 100 beats per minute is accepted as tachycardia in adults. Heart rates above the resting rate may be normal ...
s), such as
atrial fibrillation
Atrial fibrillation (AF, AFib or A-fib) is an Heart arrhythmia, abnormal heart rhythm (arrhythmia) characterized by fibrillation, rapid and irregular beating of the Atrium (heart), atrial chambers of the heart. It often begins as short periods ...
,
supraventricular tachycardia
Supraventricular tachycardia (SVT) is an umbrella term for fast heart rhythms arising from the upper part of the heart. This is in contrast to the other group of fast heart rhythms – ventricular tachycardia, which start within the lower cham ...
and
ventricular tachycardia
Ventricular tachycardia (V-tach or VT) is a cardiovascular disorder in which fast heart rate occurs in the ventricles of the heart. Although a few seconds of VT may not result in permanent problems, longer periods are dangerous; and multiple ...
.
Many attempts have been made to classify antiarrhythmic agents. Many of the antiarrhythmic agents have multiple modes of action, which makes any classification imprecise.
Action potential

The cardiac myocyte has two general types of action potentials: conduction system and working myocardium. The action potential is divided into 5 phases and shown in the diagram. The sharp rise in voltage ("0") corresponds to the influx of sodium ions, whereas the two decays ("1" and "3", respectively) correspond to the sodium-channel inactivation and the repolarizing efflux of potassium ions. The characteristic plateau ("2") results from the opening of voltage-sensitive
calcium channel
A calcium channel is an ion channel which shows selective permeability to calcium ions. It is sometimes synonymous with voltage-gated calcium channel, which are a type of calcium channel regulated by changes in membrane potential. Some calcium chan ...
s. Each phase utilizes different channels and it is useful to compare these phases to the most common classification system — Vaughan Williams — described below.
Vaughan Williams classification
The Vaughan Williams classification was introduced in 1970 by
Miles Vaughan Williams.
[Vaughan Williams, EM (1970) "Classification of antiarrhythmic drugs". In ''Symposium on Cardiac Arrhythmias'' (Eds. Sandoe E; Flensted-Jensen E; Olsen KH). Astra, Elsinore. Denmark (1970)]
Vaughan Williams was a pharmacology tutor at
Hertford College, Oxford. One of his students,
Bramah N. Singh, contributed to the development of the classification system. The system is therefore sometimes known as the Singh-Vaughan Williams classification.
The five main classes in the Vaughan Williams classification of antiarrhythmic agents are:
* Class I agents interfere with the
sodium
Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
(Na
+) channel.
* Class II agents are anti-
sympathetic nervous system
The sympathetic nervous system (SNS or SANS, sympathetic autonomic nervous system, to differentiate it from the somatic nervous system) is one of the three divisions of the autonomic nervous system, the others being the parasympathetic nervous sy ...
agents. Most agents in this class are
beta blockers.
* Class III agents affect
potassium
Potassium is a chemical element; it has Symbol (chemistry), symbol K (from Neo-Latin ) and atomic number19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to ...
(K
+) efflux.
* Class IV agents affect
calcium
Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
channels and the
AV node.
* Class V agents work by other or unknown mechanisms.
With regard to management of atrial fibrillation, classes I and III are used in rhythm control as medical cardioversion agents, while classes II and IV are used as rate-control agents.
Class I agents
The class I antiarrhythmic agents
interfere with the sodium channel.
Class I agents are grouped by what effect they have on the Na
+ channel, and what effect they have on cardiac
action potential
An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
s.
Class I agents are called membrane-stabilizing agents, "stabilizing" referring to the decrease of excitogenicity of the plasma membrane which is brought about by these agents. (Also noteworthy is that a few class II agents like propranolol also have a
membrane stabilizing effect.)
Class I agents are divided into three groups (Ia, Ib, and Ic) based upon their effect on the length of the action potential.
* Class Ia drugs lengthen the action potential (right shift)
* Class Ib drugs shorten the action potential (left shift)
* Class Ic drugs do not significantly affect the action potential (no shift)
File:Action potential class Ia.svg, Class Ia
File:Action potential Class Ib.svg, Class Ib
File:Action potential class Ic.svg, Class Ic
Class II agents
Class II agents are conventional
beta blockers. They act by blocking the effects of
catecholamine
A catecholamine (; abbreviated CA), most typically a 3,4-dihydroxyphenethylamine, is a monoamine neurotransmitter, an organic compound that has a catechol (benzene with two hydroxyl side groups next to each other) and a side-chain amine.
Cate ...
s at the
β1-adrenergic receptors, thereby decreasing sympathetic activity on the heart, which reduces intracellular cAMP levels and hence reduces Ca
2+ influx. These agents are particularly useful in the treatment of
supraventricular tachycardia
Supraventricular tachycardia (SVT) is an umbrella term for fast heart rhythms arising from the upper part of the heart. This is in contrast to the other group of fast heart rhythms – ventricular tachycardia, which start within the lower cham ...
s. They decrease conduction through the
AV node.
Class II agents include
atenolol
Atenolol is a beta blocker medication primarily used to treat high blood pressure and angina, heart-associated chest pain. Although used to treat high blood pressure, it does not seem to improve mortality rate, mortality in those with the condi ...
,
esmolol,
propranolol
Propranolol is a medication of the beta blocker class. It is used to treat hypertension, high blood pressure, some types of cardiac dysrhythmia, irregular heart rate, thyrotoxicosis, capillary hemangiomas, akathisia, performance anxiety, and ...
, and
metoprolol.
Class III agents
Class III agents predominantly
block the potassium channels, thereby prolonging repolarization. Since these agents do not affect the sodium channel, conduction velocity is not decreased. The prolongation of the action potential duration and refractory period, combined with the maintenance of normal conduction velocity, prevent re-entrant arrhythmias. (The re-entrant rhythm is less likely to interact with tissue that has become refractory). The class III agents exhibit reverse-use dependence (their potency increases with slower heart rates, and therefore improves maintenance of sinus rhythm). Inhibiting potassium channels results in slowed atrial-ventricular myocyte repolarization. Class III agents have the potential to prolong the QT interval of the EKG, and may be proarrhythmic (more associated with development of polymorphic VT).
Class III agents include:
bretylium
Bretylium (also bretylium tosylate) is an antiarrhythmic agent. It blocks the release of noradrenaline from nerve terminals. In effect, it decreases output from the peripheral sympathetic nervous system. It also acts by blocking K+ channels and ...
,
amiodarone
Amiodarone is an antiarrhythmic medication used to treat and prevent a number of types of cardiac dysrhythmias. This includes ventricular tachycardia, ventricular fibrillation, and wide complex tachycardia, atrial fibrillation, and paroxys ...
,
ibutilide,
sotalol,
dofetilide,
vernakalant, and
dronedarone.
Class IV agents
Class IV agents are slow
non-dihydropyridine calcium channel blocker
Calcium channel blockers (CCB), calcium channel antagonists or calcium antagonists are a group of medications that disrupt the movement of calcium () through calcium channels. Calcium channel blockers are used as antihypertensive drugs, i.e., as ...
s. They decrease conduction through the
AV node, and shorten phase two (the plateau) of the
cardiac action potential
Unlike the action potential in skeletal muscle cells, the cardiac action potential is not initiated by nervous activity. Instead, it arises from a group of specialized cells known as pacemaker cells, that have automatic action potential generati ...
. They thus reduce the contractility of the heart, so may be inappropriate in heart failure. However, in contrast to beta blockers, they allow the body to retain adrenergic control of heart rate and contractility.
Class IV agents include
verapamil and
diltiazem
Diltiazem, sold under the brand name Cardizem among others, is a nondihydropyridine calcium channel blocker medication used to treat high blood pressure, angina, and certain heart arrhythmias. It may also be used in hyperthyroidism if beta b ...
.
Class V and others
Since the development of the original Vaughan Williams classification system, additional agents have been used that do not fit cleanly into categories I through IV. Such agents include:
*
Adenosine
Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9- glycosidic bond. Adenosine is one of the four nucleoside build ...
is used intravenously for terminating
supraventricular tachycardia
Supraventricular tachycardia (SVT) is an umbrella term for fast heart rhythms arising from the upper part of the heart. This is in contrast to the other group of fast heart rhythms – ventricular tachycardia, which start within the lower cham ...
s.
*
Digoxin
Digoxin (better known as digitalis), sold under the brand name Lanoxin among others, is a medication used to treat various heart disease, heart conditions. Most frequently it is used for atrial fibrillation, atrial flutter, and heart failure. ...
decreases conduction of electrical impulses through the AV node and increases vagal activity via its action on the central nervous system. Via indirect action, it leads to an increase in
acetylcholine
Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Par ...
production, stimulating M2 receptors on AV node leading to an overall decrease in speed of conduction.
*
Magnesium sulfate
Magnesium sulfate or magnesium sulphate is a chemical compound, a salt with the formula , consisting of magnesium cations (20.19% by mass) and sulfate anions . It is a white crystalline solid, soluble in water but not in ethanol.
Magnesi ...
is an antiarrhythmic drug, but only used against very specific arrhythmias
such as
torsades de pointes.
History
The initial classification system had 4 classes, although their definitions different from the modern classification. Those proposed in 1970 were:
[
# Drugs with a direct membrane action: the prototype was ]quinidine
Quinidine is a class I antiarrhythmic agent, class IA antiarrhythmic agent used to treat heart rhythm disturbances. It is a diastereomer of Antimalarial medication, antimalarial agent quinine, originally derived from the bark of the cinchona tre ...
, and lignocaine
Lidocaine, also known as lignocaine and sold under the brand name Xylocaine among others, is a local anesthetic of the amino amide type. It is also used to treat ventricular tachycardia and ventricular fibrillation. When used for local anaesth ...
was a key example. Differing from other authors, Vaughan-Williams describe the main action as a slowing of the rising phase of the action potential.
# Sympatholytic drugs (drugs blocking the effects of the sympathetic nervous system
The sympathetic nervous system (SNS or SANS, sympathetic autonomic nervous system, to differentiate it from the somatic nervous system) is one of the three divisions of the autonomic nervous system, the others being the parasympathetic nervous sy ...
): examples included bretylium
Bretylium (also bretylium tosylate) is an antiarrhythmic agent. It blocks the release of noradrenaline from nerve terminals. In effect, it decreases output from the peripheral sympathetic nervous system. It also acts by blocking K+ channels and ...
and adrenergic beta-receptors blocking drugs. This is similar to the modern classification, which focuses on the latter category.
# Compounds that prolong the action potential: matching the modern classification, with the key drug example being amiodarone
Amiodarone is an antiarrhythmic medication used to treat and prevent a number of types of cardiac dysrhythmias. This includes ventricular tachycardia, ventricular fibrillation, and wide complex tachycardia, atrial fibrillation, and paroxys ...
, and a surgical example being thyroidectomy. This was not a defining characteristic in an earlier review by Charlier et al. (1968), but was supported by experimental data presented by Vaughan Williams (1970). The figure illustrating these findings was also published in the same year by Singh and Vaughan Williams.
# Drugs acting like diphenylhydantoin (DPH): mechanism of action unknown, but others had attributed its cardiac action to an indirect action on the brain; this drug is better known as antiepileptic drug phenytoin.
Sicilian gambit classification
Another approach, known as the "Sicilian gambit", placed a greater approach on the underlying mechanism.
It presents the drugs on two axes, instead of one, and is presented in tabular form. On the Y axis, each drug is listed, in roughly the Singh-Vaughan Williams order. On the X axis, the channels, receptors, pumps, and clinical effects are listed for each drug, with the results listed in a grid. It is, therefore, not a true classification in that it does not aggregate drugs into categories.
Modernized Oxford classification by Lei, Huang, Wu, and Terrar
A recent publication (2018) has now emerged with a fully modernised drug classification. This preserves the simplicity of the original Vaughan Williams framework while capturing subsequent discoveries of sarcolemmal, sarcoplasmic reticular and cytosolic biomolecules. The result is an expanded but pragmatic classification that encompasses approved and potential anti-arrhythmic drugs. This will aid our understanding and clinical management of cardiac arrhythmias and facilitate future therapeutic developments. It starts by considering the range of pharmacological targets, and tracks these to their particular cellular electrophysiological effects. It retains but expands the original Vaughan Williams classes I to IV, respectively covering actions on Na+ current components, autonomic signalling, K+ channel subspecies, and molecular targets related to Ca2+ homeostasis. It now introduces new classes incorporating additional targets, including:
*Class 0: ion channels involved in automaticity
*Class V: mechanically sensitive ion channels
*Class VI: connexins controlling electrotonic cell coupling
*Class VII: molecules underlying longer term signalling processes affecting structural remodeling.
It also allows for multiple drug targets/actions and adverse pro-arrhythmic effects. The new scheme will additionally aid development of novel drugs under development and is illustrated here.
See also
* Antiarrhythmic agents
Antiarrhythmic agents, also known as cardiac dysrhythmia medications, are a class of drugs that are used to suppress abnormally fast rhythms (tachycardias), such as atrial fibrillation, supraventricular tachycardia and ventricular tachycardia.
...
(category)
* Cardiac Arrhythmia Suppression Trial
The Cardiac Arrhythmia Suppression Trial (CAST) was a double-blind, randomized, controlled study designed to test the hypothesis that suppression of premature ventricular contraction, premature ventricular complexes (PVC) with class I antiarrhythmi ...
(CAST)
* Electrocardiogram
* Management of atrial fibrillation
* Proarrhythmic agent
References
{{Authority control
Cardiac electrophysiology