
Alpha decay or α-decay is a type of
radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
in which an
atomic nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden experiments, Geiger–Marsden gold foil experiment. After th ...
emits an
alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pro ...
(helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a
mass number
The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
that is reduced by four and an
atomic number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
that is reduced by two. An alpha particle is identical to the nucleus of a
helium-4 atom, which consists of two
protons and two
neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
s. It has a charge of and a mass of . For example,
uranium-238
Uranium-238 (238U or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However ...
decays to form
thorium-234.
While alpha particles have a
charge , this is not usually shown because a nuclear equation describes a nuclear reaction without considering the electrons – a convention that does not imply that the nuclei necessarily occur in neutral atoms.
Alpha decay typically occurs in the heaviest
nuclides. Theoretically, it can occur only in nuclei somewhat heavier than
nickel
Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow ...
(element 28), where the overall
binding energy per
nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number).
Until the 1960s, nucleons w ...
is no longer a maximum and the nuclides are therefore unstable toward spontaneous fission-type processes. In practice, this mode of decay has only been observed in nuclides considerably heavier than nickel, with the lightest known alpha emitters being the lightest
isotope
Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass number ...
s (mass numbers 104–109) of
tellurium
Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally fo ...
(element 52). Exceptionally, however,
beryllium-8 decays to two alpha particles.
Alpha decay is by far the most common form of
cluster decay
Cluster decay, also named heavy particle radioactivity or heavy ion radioactivity, is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, but less than a typi ...
, where the parent
atom
Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons.
Every solid, liquid, gas ...
ejects a defined
daughter collection of nucleons, leaving another defined product behind. It is the most common form because of the combined extremely high
nuclear binding energy
Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always ...
and relatively small mass of the alpha particle. Like other cluster decays, alpha decay is fundamentally a
quantum tunneling
In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizat ...
process. Unlike
beta decay
In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For e ...
, it is governed by the interplay between both the
strong nuclear force
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called t ...
and the
electromagnetic force.
Alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pro ...
s have a typical kinetic energy of 5 MeV (or ≈ 0.13% of their total energy, 110 TJ/kg) and have a speed of about 15,000,000 m/s, or 5% of the
speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
. There is surprisingly small variation around this energy, due to
the strong dependence of the half-life of this process on the energy produced. Because of their relatively large mass, the electric charge of and relatively low velocity, alpha particles are very likely to interact with other atoms and lose their energy, and their forward motion can be stopped by a few centimeters of
air.
Approximately 99% of the
helium
Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
produced on
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surf ...
is the result of the alpha decay of underground deposits of
mineral
In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. ...
s containing
uranium
Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weakly ...
or
thorium
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
. The helium is brought to the surface as a by-product of
natural gas
Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon ...
production.
History
Alpha particles were first described in the investigations of radioactivity by
Ernest Rutherford
Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics.
''Encyclopædia Britannica'' considers him to be the greatest ...
in 1899, and by 1907 they were identified as He
2+ ions.
By 1928,
George Gamow had solved the theory of alpha decay via tunneling. The alpha particle is trapped inside the nucleus by an attractive nuclear
potential well
and a repulsive electromagnetic
potential barrier. Classically, it is forbidden to escape, but according to the (then) newly discovered principles of
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
, it has a tiny (but non-zero) probability of "
tunneling" through the
barrier and appearing on the other side to escape the nucleus. Gamow solved a model potential for the nucleus and derived, from first principles, a relationship between the
half-life
Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of the decay, and the energy of the emission, which had been previously discovered empirically and was known as the
Geiger–Nuttall law.
Mechanism
The
nuclear force holding an atomic nucleus together is very strong, in general much stronger than the repulsive
electromagnetic forces between the protons. However, the nuclear force is also short-range, dropping quickly in strength beyond about 3
femtometers, while the electromagnetic force has an unlimited range. The strength of the attractive nuclear force keeping a nucleus together is thus proportional to the number of the nucleons, but the total disruptive electromagnetic force of proton-proton repulsion trying to break the nucleus apart is roughly proportional to the square of its atomic number. A nucleus with 210 or more nucleons is so large that the
strong nuclear force
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called t ...
holding it together can just barely counterbalance the electromagnetic repulsion between the protons it contains. Alpha decay occurs in such nuclei as a means of increasing stability by reducing size.
One curiosity is why alpha particles, helium nuclei, should be preferentially emitted as opposed to other particles like a single
proton or
neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
or
other atomic nuclei.
[These other decay modes, while possible, are extremely rare compared to alpha decay.] Part of the reason is the high
binding energy of the alpha particle, which means that its mass is less than the sum of the masses of two free protons and two free neutrons. This increases the disintegration energy. Computing the total disintegration energy given by the
equation
where is the initial mass of the nucleus, is the mass of the nucleus after particle emission, and is the mass of the emitted (alpha-)particle, one finds that in certain cases it is positive and so alpha particle emission is possible, whereas other decay modes would require energy to be added. For example, performing the calculation for
uranium-232 shows that alpha particle emission releases 5.4 MeV of energy, while a single proton emission would ''require'' 6.1 MeV. Most of the disintegration energy becomes the
kinetic energy
In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its a ...
of the alpha particle, although to fulfill
conservation of momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
, part of the energy goes to the recoil of the nucleus itself (see
atomic recoil). However, since the mass numbers of most alpha-emitting radioisotopes exceed 210, far greater than the mass number of the alpha particle (4), the fraction of the energy going to the recoil of the nucleus is generally quite small, less than 2%.
Nevertheless, the recoil energy (on the scale of keV) is still much larger than the strength of chemical bonds (on the scale of eV), so the daughter nuclide will break away from the chemical environment the parent was in. The energies and ratios of the alpha particles can be used to identify the radioactive parent via
alpha spectrometry
Alpha (uppercase , lowercase ; grc, ἄλφα, ''álpha'', or ell, άλφα, álfa) is the first letter of the Greek alphabet. In the system of Greek numerals, it has a value of one. Alpha is derived from the Phoenician letter aleph , which ...
.
These disintegration energies, however, are substantially smaller than the repulsive
potential barrier created by the interplay between the strong nuclear and the electromagnetic force, which prevents the alpha particle from escaping. The energy needed to bring an alpha particle from infinity to a point near the nucleus just outside the range of the nuclear force's influence is generally in the range of about 25 MeV. An alpha particle within the nucleus can be thought of as being inside a potential barrier whose walls are 25 MeV above the potential at infinity. However, decay alpha particles only have energies of around 4 to 9 MeV above the potential at infinity, far less than the energy needed to overcome the barrier and escape.
Quantum mechanics, however, allows the alpha particle to escape via quantum tunneling. The quantum tunneling theory of alpha decay, independently developed by George Gamow and by
Ronald Wilfred Gurney and
Edward Condon in 1928,
was hailed as a very striking confirmation of quantum theory. Essentially, the alpha particle escapes from the nucleus not by acquiring enough energy to pass over the wall confining it, but by tunneling through the wall. Gurney and Condon made the following observation in their paper on it:
It has hitherto been necessary to postulate some special arbitrary 'instability' of the nucleus, but in the following note, it is pointed out that disintegration is a natural consequence of the laws of quantum mechanics without any special hypothesis... Much has been written of the explosive violence with which the α-particle is hurled from its place in the nucleus. But from the process pictured above, one would rather say that the α-particle almost slips away unnoticed.
The theory supposes that the alpha particle can be considered an independent particle within a nucleus, that is in constant motion but held within the nucleus by strong interaction. At each collision with the repulsive potential barrier of the electromagnetic force, there is a small non-zero probability that it will tunnel its way out. An alpha particle with a speed of 1.5×10
7 m/s within a nuclear diameter of approximately 10
−14 m will collide with the barrier more than 10
21 times per second. However, if the probability of escape at each collision is very small, the half-life of the radioisotope will be very long, since it is the time required for the total probability of escape to reach 50%. As an extreme example, the half-life of the isotope
bismuth-209
Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay ( alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass u ...
is .
The isotopes in
beta-decay stable isobars that are also stable with regards to
double beta decay with
mass number
The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
''A'' = 5, ''A'' = 8, 143 ≤ ''A'' ≤ 155, 160 ≤ ''A'' ≤ 162, and ''A'' ≥ 165 are theorized to undergo alpha decay. All other mass numbers (
isobars) have exactly one theoretically
stable nuclide
Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes.
...
. Those with mass 5 decay to helium-4 and a
proton or a
neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
, and those with mass 8 decay to two helium-4 nuclei; their half-lives (
helium-5,
lithium-5, and
beryllium-8) are very short, unlike the half-lives for all other such nuclides with ''A'' ≤ 209, which are very long. (Such nuclides with ''A'' ≤ 209 are
primordial nuclide
In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
s except
146Sm.)
Working out the details of the theory leads to an equation relating the half-life of a radioisotope to the decay energy of its alpha particles, a theoretical derivation of the empirical
Geiger–Nuttall law.
Uses
Americium-241
Americium-241 (, Am-241) is an isotope of americium. Like all isotopes of americium, it is radioactive, with a half-life of . is the most common isotope of americium as well as the most prevalent isotope of americium in nuclear waste. It is c ...
, an
alpha emitter, is used in
smoke detector
A smoke detector is a device that senses smoke, typically as an indicator of fire. Smoke detectors are usually housed in plastic enclosures, typically shaped like a disk about in diameter and thick, but shape and size vary. Smoke can be detecte ...
s. The alpha particles
ionize air in an open
ion chamber and a small
current flows through the ionized air. Smoke particles from the fire that enter the chamber reduce the current, triggering the smoke detector's alarm.
Radium-223 is also an
alpha emitter. It is used in the treatment of skeletal metastases (cancers in the bones).
Alpha decay can provide a safe power source for
radioisotope thermoelectric generator
A radioisotope thermoelectric generator (RTG, RITEG), sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioacti ...
s used for
space probe
A space probe is an artificial satellite that travels through space to collect scientific data. A space probe may orbit Earth; approach the Moon; travel through interplanetary space; flyby, orbit, or land or fly on other planetary bodies; or ...
s and were used for
artificial heart pacemakers. Alpha decay is much more easily shielded against than other forms of radioactive decay.
Static eliminator
Electrostatics is a branch of physics that studies electric charges at rest ( static electricity).
Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for ambe ...
s typically use
polonium-210, an alpha emitter, to ionize the air, allowing the 'static cling' to dissipate more rapidly.
Toxicity
Highly charged and heavy, alpha particles lose their several
MeV of energy within a small volume of material, along with a very short
mean free path
In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
. This increases the chance of
double-strand break
DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA dam ...
s to the DNA in cases of internal contamination, when ingested, inhaled, injected or introduced through the skin. Otherwise, touching an alpha source is typically not harmful, as alpha particles are effectively shielded by a few centimeters of air, a piece of paper, or the thin layer of dead skin cells that make up the
epidermis
The epidermis is the outermost of the three layers that comprise the skin, the inner layers being the dermis and Subcutaneous tissue, hypodermis. The epidermis layer provides a barrier to infection from environmental pathogens and regulates the ...
; however, many alpha sources are also accompanied by
beta-emitting radio daughters, and both are often accompanied by gamma photon emission.
Relative biological effectiveness
In radiobiology, the relative biological effectiveness (often abbreviated as RBE) is the ratio of biological effectiveness of one type of ionizing radiation relative to another, given the same amount of absorbed energy. The RBE is an empiric ...
(RBE) quantifies the ability of radiation to cause certain biological effects, notably either
cancer
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bl ...
or
cell-death, for equivalent radiation exposure. Alpha radiation has a high
linear energy transfer
In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance. It describes the action of radiation into matter.
It is identical to the retarding force acting o ...
(LET) coefficient, which is about one ionization of a molecule/atom for every
angstrom
The angstromEntry "angstrom" in the Oxford online dictionary. Retrieved on 2019-03-02 from https://en.oxforddictionaries.com/definition/angstrom.Entry "angstrom" in the Merriam-Webster online dictionary. Retrieved on 2019-03-02 from https://www.m ...
of travel by the alpha particle. The RBE has been set at the value of 20 for alpha radiation by various government regulations. The RBE is set at 10 for
neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
irradiation, and at 1 for
beta radiation and ionizing photons.
However, the
recoil
Recoil (often called knockback, kickback or simply kick) is the rearward thrust generated when a gun is being discharged. In technical terms, the recoil is a result of conservation of momentum, as according to Newton's third law the force r ...
of the parent nucleus (alpha recoil) gives it a significant amount of energy, which also causes ionization damage (see
ionizing radiation). This energy is roughly the weight of the alpha (4
u) divided by the weight of the parent (typically about 200 u) times the total energy of the alpha. By some estimates, this might account for most of the internal radiation damage, as the recoil nucleus is part of an atom that is much larger than an alpha particle, and causes a very dense trail of ionization; the atom is typically a
heavy metal, which preferentially collect on the
chromosome
A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
s. In some studies, this has resulted in an RBE approaching 1,000 instead of the value used in governmental regulations.
The largest natural contributor to public radiation dose is
radon
Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through ...
, a naturally occurring, radioactive gas found in soil and rock. If the gas is inhaled, some of the radon particles may attach to the inner lining of the lung. These particles continue to decay, emitting alpha particles, which can damage cells in the lung tissue. The death of
Marie Curie
Marie Salomea Skłodowska–Curie ( , , ; born Maria Salomea Skłodowska, ; 7 November 1867 – 4 July 1934) was a Polish and naturalized-French physicist and chemist who conducted pioneering research on radioactivity. She was the first ...
at age 66 from
aplastic anemia
Aplastic anemia is a cancer in which the body fails to make blood cells in sufficient numbers. Blood cells are produced in the bone marrow by stem cells that reside there. Aplastic anemia causes a deficiency of all blood cell types: red blood ...
was probably caused by prolonged exposure to high doses of ionizing radiation, but it is not clear if this was due to alpha radiation or X-rays. Curie worked extensively with radium, which decays into radon,
[Health Physics Society, "Did Marie Curie die of a radiation overexposure?]
along with other radioactive materials that emit
beta decay, beta and
gamma ray
A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nucleus, atomic nuclei. It consists of the shortest wavelength electromagnetic wav ...
s. However, Curie also worked with unshielded X-ray tubes during World War I, and analysis of her skeleton during a reburial showed a relatively low level of radioisotope burden.
The Russian dissident
Alexander Litvinenko
Alexander Valterovich "Sasha" Litvinenko (30 August 1962 ( at WebCite) or 4 December 1962 – 23 November 2006) was a British-naturalised Russian defector and former officer of the Russian Federal Security Service (FSB) who specialised in ...
's 2006 murder by
radiation poisoning is thought to have been carried out with
polonium-210, an alpha emitter.
References
Alpha emitters by increasing energy (Appendix 1)
Notes
External links
* '
The LIVEChart of Nuclides - IAEA '' with filter on alpha decay
showing the recoil of daughter
{{DEFAULTSORT:Alpha Decay
Helium
Nuclear physics
Radioactivity