Algebraic Eraser
   HOME

TheInfoList



OR:

Algebraic Eraser (AE)Also referred to as the colored Burau key agreement protocol (CBKAP), Anshel–Anshel–Goldfeld–Lemieux key agreement protocol, Algebraic Eraser key agreement protocol (AEKAP), and Algebraic Eraser Diffie–Hellman (AEDH). is an anonymous
key agreement In cryptography, a key-agreement protocol is a protocol whereby two (or more) parties generate a cryptographic Key (cryptography), key as a function of information provided by each honest party so that no party can predetermine the resulting value ...
protocol that allows two parties, each having an AE public–private key pair, to establish a
shared secret In cryptography, a shared secret is a piece of data, known only to the parties involved, in a secure communication. This usually refers to the key of a symmetric cryptosystem. The shared secret can be a PIN code, a password, a passphrase, a b ...
over an insecure channel. This shared secret may be directly used as a key, or to derive another key that can then be used to encrypt subsequent communications using a symmetric key cipher. Algebraic Eraser was developed by Iris Anshel, Michael Anshel, Dorian Goldfeld and Stephane Lemieux. SecureRF owns
patent A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an sufficiency of disclosure, enabling discl ...
s covering the protocol and unsuccessfully attempted (as of July 2019) to standardize the protocol as part of ISO/IEC 29167-20, a standard for securing
radio-frequency identification Radio-frequency identification (RFID) uses electromagnetic fields to automatically Automatic identification system, identify and Tracking system, track tags attached to objects. An RFID system consists of a tiny radio transponder called a tag, ...
devices and
wireless sensor network Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental ...
s.


Keyset parameters

Before two parties can establish a key they must first agree on a set of parameters, called the keyset parameters. These parameters comprise: * N, the number of strands in the braid, * q, the size of the finite field \mathbb_q, * M_*, the initial NxN seed matrix in \mathbb_q, * \Tau, a set of N elements in the finite field \mathbb_q (also called the T-values), and * A,B a set of conjugates in the
braid group In mathematics, the braid group on strands (denoted B_n), also known as the Artin braid group, is the group whose elements are equivalence classes of Braid theory, -braids (e.g. under ambient isotopy), and whose group operation is composition of ...
designed to commute with each other.


E-multiplication

The fundamental operation of the Algebraic Eraser is a one-way function called E-multiplication. Given a matrix, permutation, an Artin generator \beta in the braid group, and T-values, one applies E-multiplication by converting the generator to a colored Burau matrix and braid permutation, (CB(\beta),\sigma_\beta), applying the permutation and T-values, and then multiplying the matrices and permutations. The output of E-multiplication is itself a matrix and permutation pair: (M',\sigma') = (M,\sigma_0)*(CB(\beta),\sigma_\beta).


Key establishment protocol

The following example illustrates how to make a key establishment. Suppose
Alice Alice may refer to: * Alice (name), most often a feminine given name, but also used as a surname Literature * Alice (''Alice's Adventures in Wonderland''), a character in books by Lewis Carroll * ''Alice'' series, children's and teen books by ...
wants to establish a shared key with Bob, but the only channel available may be eavesdropped by a third party. Initially, Alice and Bob must agree on the keyset parameters they will use. Each party must have a key pair derived from the keyset, consisting of a private key (e.g., in the case of Alice) (m_A,\Beta_a) where m_A is a randomly selected polynomial of the seed matrix m_A = \sum_^ and a braid, which is a randomly selected set of conjugates and inverses chosen from the keyset parameters (A for Alice and B for Bob, where (for Alice) \Beta_a = \prod_^A_i^). From their private key material Alice and Bob each compute their public key (Pub_A,\sigma_a) and (Pub_B,\sigma_b) where, e.g., (Pub_A,\sigma_a) = (m_A,id) * b_a, that is, the result of E-Multiplication of the private matrix and identity-permutation with the private braid. Each party must know the other party's public key prior to execution of the protocol. To compute the shared secret, Alice computes (S_,\sigma_) = (m_A Pub_B,\sigma_b) * \Beta_a and Bob computes (S_,\sigma_) = (m_B Pub_A,\sigma_a) * \Beta_b. The shared secret is the matrix/permutation pair (S_,\sigma_), which equals (S_,\sigma_). The shared secrets are equal because the conjugate sets A and B are chosen to commute and both Alice and Bob use the same seed matrix M_* and T-values \Tau. The only information about her private key that Alice initially exposes is her public key. So, no party other than Alice can determine Alice's private key, unless that party can solve the Braid Group Simultaneous Conjugacy Separation Search problem. Bob's private key is similarly secure. No party other than Alice or Bob can compute the shared secret, unless that party can solve the Diffie–Hellman problem. The public keys are either static (and trusted, say via a certificate) or ephemeral.
Ephemeral key A cryptographic key is called ephemeral if it is generated for each execution of a key establishment process. In some cases ephemeral keys are used more than once, within a single session (e.g., in broadcast applications) where the sender generat ...
s are temporary and not necessarily authenticated, so if authentication is desired, authenticity assurances must be obtained by other means. Authentication is necessary to avoid
man-in-the-middle attack In cryptography and computer security, a man-in-the-middle (MITM) attack, or on-path attack, is a cyberattack where the attacker secretly relays and possibly alters the communications between two parties who believe that they are directly communi ...
s. If one of Alice or Bob's public key is static then man-in-the-middle attacks are thwarted. Static public keys provide neither
forward secrecy In cryptography, forward secrecy (FS), also known as perfect forward secrecy (PFS), is a feature of specific key-agreement protocols that gives assurances that session keys will not be compromised even if long-term secrets used in the session ke ...
nor key-compromise impersonation resilience, among other advanced security properties. Holders of static private keys should validate the other public key, and should apply a secure key derivation function to the raw Diffie–Hellman shared secret to avoid leaking information about the static private key.


Security

The security of AE is based on the Generalized Simultaneous Conjugacy Search Problem (GSCSP) within the
braid group In mathematics, the braid group on strands (denoted B_n), also known as the Artin braid group, is the group whose elements are equivalence classes of Braid theory, -braids (e.g. under ambient isotopy), and whose group operation is composition of ...
. This is a distinct and different hard problem than the Conjugacy Search Problem (CSP), which has been the central hard problem in what is called braid group cryptography. Even if CSP is uniformly broken (which has not been done to date), it is not known how this would facilitate a break of GSCSP.


Known attacks

The first attack by Kalka, Teicher and Tsaban shows a class of weak-keys when M_* or m_A are chosen randomly. The authors of Algebraic Eraser followed up with a preprint on how to choose parameters that aren't prone to the attack. Ben-Zvi, Blackburn, and Tsaban improved the first attack into one the authors claim can break the publicized security parameters (claimed to provide 128-bit security) using less than 8 CPU hours, and less than 64MB of memory. Anshel, Atkins and Goldfeld responded to this attack in January 2016. A second attack by Myasnikov and Ushakov, published as a preprint, shows that conjugates chosen with a too-short conjugator braid can be separated, breaking the system. This attack was refuted by Gunnells, by showing that properly sized conjugator braids cannot be separated. In 2016, Simon R. Blackburn and Matthew J. B. Robshaw published a range of practical attacks against the January 2016 draft of the ISO/IEC 29167-20 over-the-air protocol, including impersonation of a target tag with negligible amount of time and memory and full private key recovery requiring 249 time and 248 memory. Atkins and Goldfeld responded that adding a
hash Hash, hashes, hash mark, or hashing may refer to: Substances * Hash (food), a coarse mixture of ingredients, often based on minced meat * Hash (stew), a pork and onion-based gravy found in South Carolina * Hash, a nickname for hashish, a canna ...
or
message authentication code In cryptography, a message authentication code (MAC), sometimes known as an authentication tag, is a short piece of information used for authentication, authenticating and Data integrity, integrity-checking a message. In other words, it is used t ...
to the draft protocol defeats these attacks.


See also

*
Anshel–Anshel–Goldfeld key exchange Anshel–Anshel–Goldfeld protocol, also known as a commutator key exchange, is a key-exchange protocol using nonabelian groups. It was invented by Drs. Michael Anshel, Iris Anshel, and Dorian Goldfeld. Unlike other group-based protocols, it doe ...
*
Group-based cryptography Group-based cryptography is a use of groups to construct cryptographic primitives. A group is a very general algebraic object and most cryptographic schemes use groups in some way. In particular Diffie–Hellman key exchange uses finite cyclic gro ...
*
Non-commutative cryptography Non-commutative cryptography is the area of cryptology where the cryptographic primitives, methods and systems are based on algebraic structures like semigroups, groups and rings which are non-commutative. One of the earliest applications of a non-c ...


Notes


References


External links


SecureRF home page
{{DEFAULTSORT:Algebraic Eraser Diffie-Hellman Key-agreement protocols