History
Armour-piercing discarding sabot (APDS) was initially the main design of the kinetic energy (KE) penetrator. The logical progression was to make the shot longer and thinner to concentrate the kinetic energy in a smaller area. However, a long, thin rod is aerodynamically unstable; it tends to tumble in flight and is less accurate. Traditionally, rounds were given stability in flight from the rifling of the gun barrel, which imparts a spin to the round. Up to a certain limit, this is effective, but once the projectile's length is more than six or seven times its diameter, rifling becomes less effective. Adding fins like the fletching of an arrow to the base gives the round stability. The spin from standard rifling decreases the performance of these rounds (rifling diverts some of the linear kinetic energy to rotational kinetic energy, thus decreasing the round's velocity and impact energy), and very high rotation on a fin-stabilized projectile can dramatically increase aerodynamic drag, further reducing impact velocity. For these reasons APFSDS projectiles are generally fired from smoothbore guns, a practice that has been taken up for tank guns by China, India, Israel, Italy, Japan, France, Germany, Pakistan, Turkey, Russia, and the United States. Nevertheless, in the early development of APFSDS ammunition, existing rifled barrel cannons were used, (and are still in use), such as the 105 mm M68/M68E1 cannon mounted on the M60/A1/A3 main battle tank or the British 120 mm Royal Ordnance L30 of the Challenger 2 tank. To reduce the spin rate when using a rifled barrel, a "slip obturator", (slip obturation ring), is incorporated that allows the high pressure propellant gasses to seal, yet not transfer the total spin rate of the rifling into the projectile. The projectile still exits the barrel with some residual spinning, but at an acceptably low rate. In addition, some spin rate is beneficial to a fin-stabilized projectile, averaging out aerodynamic imbalances and improving accuracy. Even smooth-bore fired APFSDS projectiles incorporate fins that are slightly canted to provide some spin rate during flight; and very low twist rifled barrels have also been developed for the express purpose of firing APFSDS ammunition.Design
Fluid penetration
Despite practical penetrator and target materials not being fluids before impact, at sufficiently high impact velocity even crystalline materials begin to behave in a highly plastic fluid-like manner, so many aspects of hydro-dynamic penetration do apply. Long rod projectiles penetrate a fluid in the literal sense, based simply on the density of the target armour and the density and length of the penetrator. The penetrator will continue to displace the target to a depth of the penetrator length times the square root of the penetrator to target densities. One observes immediately that longer, denser penetrators will penetrate to deeper depths, and this forms the basis for the development of long-rod anti-armour projectiles. The important parameters for an effective long-rod penetrator, therefore, are very high density with respect to the target, high hardness to penetrate hard target surfaces, very high toughness (ductility) so the rod does not shatter on impact, and very high strength to survive gun launch accelerations, as well as the variabilities of target impact, such as hitting at an oblique angle and surviving counter-measures such as explosive-reactive armor.Tungsten and uranium
While penetrator geometry has adapted to reactive armour counter-measures, tungsten heavy alloy (WHA) and depleted uranium (DU) alloy continue to be the materials of choice. Both are dense, hard, tough, ductile, and strong; all exceptional qualities suitable to deep armor penetration. Each material exhibits its own unique penetration qualities that may, or may not, be the best choice for any one anti-armor application. For example, depleted uranium alloy isSabot design
Typical velocities of APFSDS rounds vary between manufacturers and muzzle length/types. As a typical example, the American General Dynamics KEW-A1 has a muzzle velocity of 1,740 m/s (5,700 ft/s). This compares to 914 m/s (3,000 ft/s) for a typical rifle (small arms) round. APFSDS rounds generally operate in the range of 1,400 to 1,800 m/s (4,593 to 5,906 ft/s). Above a certain minimum impact velocity necessary to overcome target material strength parameters significantly, penetrator length is more important than impact velocity; as exemplified by the fact that the base model M829 flies nearly 200 m/s (656 ft/s) faster than the newer model M829A3, but is only about one half the length, wholly inadequate for defeating state-of-the-art armor arrays. Complicating matters, when foreign deployment of military forces or export sales markets are considered, a sabot designed specifically to launch a DU penetrator cannot simply be used to launch a substitute WHA penetrator, even of exactly the same manufactured geometry. The two materials behave differently under high pressure, high launch acceleration forces, such that entirely different sabot material geometries, (thicker or thinner in some places, if even possible), are required to maintain in-bore structural integrity. Often the greater engineering challenge is designing an efficient sabot to successfully launch extremely long penetrators, now approaching in length. The sabot, necessary to fill the bore of the cannon when firing a long, slender flight projectile, is parasitic weight that subtracts from the potential muzzle velocity of the entire projectile. Maintaining the in-bore structural integrity of such a long flight projectile under accelerations of tens of thousands ofSee also
* Compact Kinetic Energy Missile * Impact depth * Kinetic bombardment * MGM-166 LOSATReferences
Further reading
* {{refend Anti-tank rounds Projectiles Ammunition