
In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the
arithmetic mean
In mathematics and statistics, the arithmetic mean ( ), arithmetic average, or just the ''mean'' or ''average'' is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results fr ...
of a list of non-negative
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s is greater than or equal to the
geometric mean
In mathematics, the geometric mean is a mean or average which indicates a central tendency of a finite collection of positive real numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometri ...
of the same list; and further, that the two means are equal
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
every number in the list is the same (in which case they are both that number).
The simplest non-trivial case is for two non-negative numbers and , that is,
:
with equality if and only if . This follows from the fact that the square of a real number is always non-negative (greater than or equal to zero) and from the identity :
:
Hence , with equality when , i.e. . The AM–GM inequality then follows from taking the positive square root of both sides and then dividing both sides by ''2''.
For a geometrical interpretation, consider a
rectangle
In Euclidean geometry, Euclidean plane geometry, a rectangle is a Rectilinear polygon, rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that a ...
with sides of length and ; it has
perimeter
A perimeter is the length of a closed boundary that encompasses, surrounds, or outlines either a two-dimensional shape or a one-dimensional line. The perimeter of a circle or an ellipse is called its circumference.
Calculating the perimet ...
and
area
Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
. Similarly, a
square
In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
with all sides of length has the perimeter and the same area as the rectangle. The simplest non-trivial case of the AM–GM inequality implies for the perimeters that and that only the square has the smallest perimeter amongst all rectangles of equal area.
The simplest case is implicit in
Euclid's Elements
The ''Elements'' ( ) is a mathematics, mathematical treatise written 300 BC by the Ancient Greek mathematics, Ancient Greek mathematician Euclid.
''Elements'' is the oldest extant large-scale deductive treatment of mathematics. Drawing on the w ...
, Book V, Proposition 25.
Extensions of the AM–GM inequality treat
weighted means and
generalized mean
In mathematics, generalised means (or power mean or Hölder mean from Otto Hölder) are a family of functions for aggregating sets of numbers. These include as special cases the Pythagorean means (arithmetic mean, arithmetic, geometric mean, ge ...
s.
Background
The ''
arithmetic mean
In mathematics and statistics, the arithmetic mean ( ), arithmetic average, or just the ''mean'' or ''average'' is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results fr ...
'', or less precisely the ''average'', of a list of numbers is the sum of the numbers divided by :
:
The ''
geometric mean
In mathematics, the geometric mean is a mean or average which indicates a central tendency of a finite collection of positive real numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometri ...
'' is similar, except that it is only defined for a list of ''nonnegative'' real numbers, and uses multiplication and a
root
In vascular plants, the roots are the plant organ, organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often bel ...
in place of addition and division:
:
If , this is equal to the
exponential of the arithmetic mean of the
natural logarithm
The natural logarithm of a number is its logarithm to the base of a logarithm, base of the e (mathematical constant), mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approxima ...
s of the numbers:
:
The inequality
Restating the inequality using mathematical notation, we have that for any list of nonnegative real numbers ,
:
and that equality holds if and only if .
Geometric interpretation
In two dimensions, is the
perimeter
A perimeter is the length of a closed boundary that encompasses, surrounds, or outlines either a two-dimensional shape or a one-dimensional line. The perimeter of a circle or an ellipse is called its circumference.
Calculating the perimet ...
of a rectangle with sides of length and . Similarly, is the perimeter of a square with the same
area
Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
, , as that rectangle. Thus for the AM–GM inequality states that a rectangle of a given area has the smallest perimeter if that rectangle is also a square.
The full inequality is an extension of this idea to dimensions. Consider an -dimensional box with edge lengths .
Every vertex of the box is connected to edges of different directions, so the average length of edges incident to the vertex is .
On the other hand,