In
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a 7-cube is a
seven-dimensional hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
with 128
vertices, 448
edge
Edge or EDGE may refer to:
Technology Computing
* Edge computing, a network load-balancing system
* Edge device, an entry point to a computer network
* Adobe Edge, a graphical development application
* Microsoft Edge, a web browser developed by ...
s, 672 square
faces
The face is the front of the head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affect the ...
, 560 cubic
cells
Cell most often refers to:
* Cell (biology), the functional basic unit of life
* Cellphone, a phone connected to a cellular network
* Clandestine cell, a penetration-resistant form of a secret or outlawed organization
* Electrochemical cell, a d ...
, 280
tesseract
In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six ...
4-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object. For example, a cube has six faces in this sense.
In more modern treatments of the geometry of polyhedra and higher-dimensional polyto ...
s, 84
penteract
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.
It is represented by Schläfli symbol or , constructed as 3 tesseracts ...
5-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object. For example, a cube has six faces in this sense.
In more modern treatments of the geometry of polyhedra and higher-dimensional polyto ...
s, and 14
hexeract
In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.
It has Schläfli symbol , being composed of 3 5-cubes around each 4-face. It can b ...
6-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object. For example, a cube has six faces in this sense.
In more modern treatments of the geometry of polyhedra and higher-dimensional polytop ...
s.
It can be named by its
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, wh ...
, being composed of 3
6-cube
In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.
It has Schläfli symbol , being composed of 3 5-cubes around each 4-face. It ...
s around each 5-face. It can be called a hepteract, a
portmanteau
In linguistics, a blend—also known as a blend word, lexical blend, or portmanteau—is a word formed by combining the meanings, and parts of the sounds, of two or more words together. of
tesseract
In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six ...
(the ''4-cube'') and ''hepta'' for seven (dimensions) in
Greek
Greek may refer to:
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group
*Greek language, a branch of the Indo-European language family
**Proto-Greek language, the assumed last common ancestor of all kno ...
. It can also be called a regular tetradeca-7-tope or tetradecaexon, being a
7 dimensional polytope constructed from 14 regular
facet
Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cu ...
s.
Related polytopes
The ''7-cube'' is 7th in a series of
hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
:
The
dual
Dual or Duals may refer to:
Paired/two things
* Dual (mathematics), a notion of paired concepts that mirror one another
** Dual (category theory), a formalization of mathematical duality
*** see more cases in :Duality theories
* Dual number, a nu ...
of a 7-cube is called a
7-orthoplex
In geometry, a 7-orthoplex, or 7- cross polytope, is a regular 7-polytope with 14 vertices, 84 edges, 280 triangle faces, 560 tetrahedron cells, 672 5-cell ''4-faces'', 448 ''5-faces'', and 128 ''6-faces''.
It has two constructed forms, th ...
, and is a part of the infinite family of
cross-polytope
In geometry, a cross-polytope, hyperoctahedron, orthoplex, staurotope, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a reg ...
s.
Applying an ''
alternation'' operation, deleting alternating vertices of the hepteract, creates another
uniform polytope
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform Facet (mathematics), facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the sam ...
, called a
demihepteract
In geometry, a demihepteract or 7-demicube is a uniform 7-polytope, constructed from the 7-hypercube (hepteract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.
E. L. E ...
, (part of an infinite family called
demihypercube
In geometry, demihypercubes (also called ''n-demicubes'', ''n-hemicubes'', and ''half measure polytopes'') are a class of ''n''-polytopes constructed from alternation of an ''n''-hypercube, labeled as ''hγn'' for being ''half'' of the hype ...
s), which has 14
demihexeract
In geometry, a 6-demicube, demihexeract or hemihexeract is a uniform 6-polytope, constructed from a ''6-cube'' (hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes. ...
ic and 64
6-simplex
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°.
A ...
6-faces.
As a configuration
This
configuration matrix represents the 7-cube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-cube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.
[Coxeter, Complex Regular Polytopes, p.117]
Cartesian coordinates
Cartesian coordinates
In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
for the vertices of a hepteract centered at the origin and edge length 2 are
: (±1,±1,±1,±1,±1,±1,±1)
while the interior of the same consists of all points (x
0, x
1, x
2, x
3, x
4, x
5, x
6) with -1 < x
i < 1.
Projections
References
*
H.S.M. Coxeter
Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century.
Coxeter was born in England and educated ...
:
** Coxeter, ''
Regular Polytopes
''Regular Polytopes'' is a geometry book on regular polytopes written by Harold Scott MacDonald Coxeter. It was originally published by Methuen in 1947 and by Pitman Publishing in 1948, with a second edition published by Macmillan in 1963 and a th ...
'', (3rd edition, 1973), Dover edition, , p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk,
Peter McMullen
Peter McMullen (born 11 May 1942) is a British mathematician, a professor emeritus of mathematics at University College London.
Education and career
McMullen earned bachelor's and master's degrees from Trinity College, Cambridge, and studied at ...
, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'',
ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'',
ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'',
ath. Zeit. 200 (1988) 3-45*
Norman Johnson ''Uniform Polytopes'', Manuscript (1991)
** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966)
*
External links
*
*
*
Multi-dimensional Glossary: hypercubeGarrett Jones
www.4d-screen.de
{{Polytopes
7-polytopes
Articles containing video clips