5-dimensional
   HOME

TheInfoList



OR:

A five-dimensional (5D) space is a mathematical or physical concept referring to a
space Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
that has five independent
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
s. In physics and geometry, such a space extends the familiar three spatial dimensions plus time (4D spacetime) by introducing an additional degree of freedom, which is often used to model advanced theories such as higher-dimensional gravity, extra spatial directions, or connections between different points in spacetime.


Concepts

Concepts related to five-dimensional spaces include super-dimensional or hyper-dimensional spaces, which generally refer to any space with more than four dimensions. These ideas appear in
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict List of natural phenomena, natural phenomena. This is in contrast to experimental p ...
,
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
, and
science fiction Science fiction (often shortened to sci-fi or abbreviated SF) is a genre of speculative fiction that deals with imaginative and futuristic concepts. These concepts may include information technology and robotics, biological manipulations, space ...
to explore phenomena beyond ordinary perception. Important related topics include: *
5-manifold In mathematics, a 5-manifold is a 5-dimensional topological manifold, possibly with a piecewise linear or smooth structure. Non-simply connected 5-manifolds are impossible to classify, as this is harder than solving the word problem for groups.. ...
— a generalization of a surface or volume to five dimensions. *
5-cube In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or , constructed as 3 tesseracts ...
— also called a penteract, a specific five-dimensional hypercube. *
Hypersphere In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point ...
— the generalization of a sphere to higher dimensions, including five-dimensional space. * List of regular 5-polytopes — regular geometric shapes that exist in five-dimensional space. *
Four-dimensional space Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called ''dimensions'' ...
— a foundational step to understanding five-dimensional extensions.


Five-dimensional Euclidean geometry

5D
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
designated by the mathematical sign: \mathbb5 is dimensions beyond two (
planar Planar is an adjective meaning "relating to a plane (geometry)". Planar may also refer to: Science and technology * Planar (computer graphics), computer graphics pixel information from several bitplanes * Planar (transmission line technologies), ...
) and three (
solid Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
). Shapes studied in five dimensions include counterparts of
regular polyhedra A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different eq ...
and of the
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
.


Polytopes

In five or more dimensions, only three
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitive group action, transitively on its flag (geometry), flags, thus giving it the highest degree of symmetry. In particular, all its elements or -faces (for all , w ...
s exist. In five dimensions, they are: * The
5-simplex In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°. The ...
of the
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
family, , with 6 vertices, 15 edges, 20 faces (each an
equilateral triangle An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the ...
), 15 cells (each a regular
tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
), and 6 hypercells (each a
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional space, four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, hypertetrahedron, pentachoron, pentatope, pe ...
). * The
5-cube In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or , constructed as 3 tesseracts ...
of the
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
family, , with 32 vertices, 80 edges, 80 faces (each a
square In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
), 40 cells (each a
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
), and 10 hypercells (each a
tesseract In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six ...
). * The
5-orthoplex In five-dimensional geometry, a 5-orthoplex, or 5- cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regula ...
of the
cross polytope In geometry, a cross-polytope, hyperoctahedron, orthoplex, staurotope, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a reg ...
family, , with 10 vertices, 40 edges, 80 faces (each a
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
), 80 cells (each a
tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
), and 32 hypercells (each a
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional space, four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, hypertetrahedron, pentachoron, pentatope, pe ...
). An important uniform 5-polytope is the
5-demicube In Five-dimensional space, five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a ''5-hypercube'' (penteract) with Alternation (geometry), alternated vertices removed. It was discovered by Thorold ...
, h has half the vertices of the 5-cube (16), bounded by alternating
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional space, four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, hypertetrahedron, pentachoron, pentatope, pe ...
and
16-cell In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the ...
hypercells. The expanded or stericated 5-simplex is the vertex figure of the A5 lattice, . It and has a doubled symmetry from its symmetric Coxeter diagram. The kissing number of the lattice, 30, is represented in its vertices. The
rectified 5-orthoplex In five-dimensional geometry, a rectified 5-orthoplex is a convex uniform 5-polytope, being a Rectification (geometry), rectification of the regular 5-orthoplex. There are 5 degrees of rectifications for any 5-polytope, the zeroth here being the ...
is the vertex figure of the D5 lattice, . Its 40 vertices represent the
kissing number In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement o ...
of the lattice and the highest for dimension 5.


Other five-dimensional geometries

The theory of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Ele ...
makes use of
Minkowski spacetime In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model. The model helps show how a s ...
, a type of geometry that locates events in both space and time. The time dimension is mathematically distinguished from the spatial dimensions by a modification in the formula for computing the "distance" between events. Ordinary Minkowski spacetime has four dimensions in all, three of space and one of time. However, higher-dimensional generalizations of the concept have been employed in various proposals.
Kaluza–Klein theory In physics, Kaluza–Klein theory (KK theory) is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to ...
, a speculative attempt to develop a unified theory of
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
and
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
, relied upon a spacetime with four dimensions of space and one of time. Geometries can also be constructed in which the coordinates are something other than real numbers. For example, one can define a space in which the points are labeled by
tuple In mathematics, a tuple is a finite sequence or ''ordered list'' of numbers or, more generally, mathematical objects, which are called the ''elements'' of the tuple. An -tuple is a tuple of elements, where is a non-negative integer. There is o ...
s of 5
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. This is often denoted \mathbb^5. In
quantum information theory Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both t ...
, quantum systems described by
quantum state In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system ...
s belonging to \mathbb^5 are sometimes called ''ququints.''


See also

*
5-manifold In mathematics, a 5-manifold is a 5-dimensional topological manifold, possibly with a piecewise linear or smooth structure. Non-simply connected 5-manifolds are impossible to classify, as this is harder than solving the word problem for groups.. ...
*
Gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
*
Hypersphere In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point ...
* List of regular 5-polytopes *
Four-dimensional space Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called ''dimensions'' ...


References


Further reading

* * * Weyl, Hermann,
Raum, Zeit, Materie
', 1918. 5 edns. to 1922 ed. with notes by Jūrgen Ehlers, 1980. trans. 4th edn. Henry Brose, 1922
Space Time Matter
', Methuen, rept. 1952 Dover. .


External links



{{Dimension topics Dimension Multi-dimensional geometry 5 (number)