In
five-dimensional geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a 5-cube is a name for a five-dimensional
hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
with 32
vertices, 80
edge
Edge or EDGE may refer to:
Technology Computing
* Edge computing, a network load-balancing system
* Edge device, an entry point to a computer network
* Adobe Edge, a graphical development application
* Microsoft Edge, a web browser developed by ...
s, 80 square
faces
The face is the front of the head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affect the ...
, 40 cubic
cells
Cell most often refers to:
* Cell (biology), the functional basic unit of life
* Cellphone, a phone connected to a cellular network
* Clandestine cell, a penetration-resistant form of a secret or outlawed organization
* Electrochemical cell, a d ...
, and 10
tesseract
In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six ...
4-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object. For example, a cube has six faces in this sense.
In more modern treatments of the geometry of polyhedra and higher-dimensional polyto ...
s.
It is represented by
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, wh ...
or , constructed as 3 tesseracts, , around each cubic
ridge
A ridge is a long, narrow, elevated geomorphologic landform, structural feature, or a combination of both separated from the surrounding terrain by steep sides. The sides of a ridge slope away from a narrow top, the crest or ridgecrest, wi ...
.
Related polytopes
It is a part of an infinite
hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
family. The
dual
Dual or Duals may refer to:
Paired/two things
* Dual (mathematics), a notion of paired concepts that mirror one another
** Dual (category theory), a formalization of mathematical duality
*** see more cases in :Duality theories
* Dual number, a nu ...
of a 5-cube is the
5-orthoplex
In five-dimensional geometry, a 5-orthoplex, or 5- cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.
It has two constructed forms, the first being regula ...
, of the infinite family of
orthoplex
In geometry, a cross-polytope, hyperoctahedron, orthoplex, staurotope, or cocube is a regular polytope, regular, convex polytope that exists in ''n''-dimensions, dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensi ...
es.
Applying an ''
alternation'' operation, deleting alternating vertices of the 5-cube, creates another
uniform 5-polytope
In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope Facet (geometry), facets.
The complete set of convex uniform 5-polytopes ...
, called a
5-demicube
In Five-dimensional space, five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a ''5-hypercube'' (penteract) with Alternation (geometry), alternated vertices removed.
It was discovered by Thorold ...
, which is also part of an infinite family called the
demihypercube
In geometry, demihypercubes (also called ''n-demicubes'', ''n-hemicubes'', and ''half measure polytopes'') are a class of ''n''-polytopes constructed from alternation of an ''n''-hypercube, labeled as ''hγn'' for being ''half'' of the hype ...
s.
The 5-cube can be seen as an ''order-3 tesseractic honeycomb'' on a
4-sphere. It is related to the Euclidean 4-space (order-4)
tesseractic honeycomb
In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol , and consisting of a packing of tesseracts (4-hypercubes).
Its vertex fi ...
and paracompact hyperbolic honeycomb
order-5 tesseractic honeycomb
In the geometry of hyperbolic 4-space, the order-5 tesseractic honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol , it has five 8-cells (also known as tesseracts) around each face. Its du ...
.
As a configuration
This
configuration matrix represents the 5-cube. The rows and columns correspond to vertices, edges, faces, cells, and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-cube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.
[Coxeter, Complex Regular Polytopes, p.117]
Cartesian coordinates
The
Cartesian coordinates
In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
of the vertices of a 5-cube centered at the origin and having edge length 2 are
: (±1,±1,±1,±1,±1),
while this 5-cube's interior consists of all points (''x''
0, ''x''
1, ''x''
2, ''x''
3, ''x''
4) with -1 < ''x''
''i'' < 1 for all ''i''.
Images
''n''-cube
Coxeter plane
In mathematics, a Coxeter element is an element of an irreducible Coxeter group which is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which hav ...
projections in the B
k Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
s project into k-cube graphs, with power of two vertices overlapping in the projective graphs.
Projection
The 5-cube can be projected down to 3 dimensions with a
rhombic icosahedron
The rhombic icosahedron is a polyhedron shaped like an Oblate spheroid, oblate sphere. Its 20 faces are Congruence (geometry), congruent golden rhombi; 3, 4, or 5 faces meet at each vertex. It has 5 faces (green on top figure) meeting at each of ...
envelope. There are 22 exterior vertices, and 10 interior vertices. The 10 interior vertices have the convex hull of a
pentagonal antiprism
In geometry, the pentagonal antiprism is the third in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It consists of two pentagons joined to each other by a ring of ten triangles fo ...
. The 80 edges project into 40 external edges and 40 internal ones. The 40 cubes project into
golden rhombohedra which can be used to
dissect the rhombic icosahedron. The projection vectors are u = , v = , w = , where φ is the
golden ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if
\fr ...
,
.
It is also possible to project penteracts into three-dimensional space, similarly to projecting a cube into two-dimensional space.
Symmetry
The ''5-cube'' has
Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
symmetry B
5, abstract structure
, order 3840, containing 25 hyperplanes of reflection. The
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, wh ...
for the 5-cube, , matches the
Coxeter notation
In geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, ...
symmetry
,3,3,3
Prisms
All
hypercubes
In geometry, a hypercube is an N-dimensional space, ''n''-dimensional analogue of a Square (geometry), square (two-dimensional, ) and a cube (Three-dimensional, ); the special case for Four-dimensional space, is known as a ''tesseract''. It is ...
have lower symmetry forms constructed as prisms. The 5-cube has 7 prismatic forms from the lowest 5-
orthotope
In geometry, a hyperrectangle (also called a box, hyperbox, k-cell or orthotopeCoxeter, 1973), is the generalization of a rectangle (a plane figure) and the rectangular cuboid (a solid figure) to higher dimensions. A necessary and sufficient con ...
,
5, and upwards as orthogonal edges are constrained to be of equal length. The vertices in a prism are equal to the product of the vertices in the elements. The edges of a prism can be partitioned into the number of edges in an element times the number of vertices in all the other elements.
Related polytopes
The ''5-cube'' is 5th in a series of
hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
:
The
regular skew polyhedron
In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedr ...
can be realized within the 5-cube, with its 32 vertices, 80 edges, and 40 square faces, and the other 40 square faces of the 5-cube become square ''holes''.
This polytope is one of 31
uniform 5-polytope
In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope Facet (geometry), facets.
The complete set of convex uniform 5-polytopes ...
s generated from the regular 5-cube or
5-orthoplex
In five-dimensional geometry, a 5-orthoplex, or 5- cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.
It has two constructed forms, the first being regula ...
.
References
*
H.S.M. Coxeter:
** Coxeter, ''
Regular Polytopes
''Regular Polytopes'' is a geometry book on regular polytopes written by Harold Scott MacDonald Coxeter. It was originally published by Methuen in 1947 and by Pitman Publishing in 1948, with a second edition published by Macmillan in 1963 and a th ...
'', (3rd edition, 1973), Dover edition, , p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'',
ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'',
ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'',
ath. Zeit. 200 (1988) 3-45*
Norman Johnson ''Uniform Polytopes'', Manuscript (1991)
** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966)
*
External links
*
*
Multi-dimensional Glossary: hypercubeGarrett Jones
{{Polytopes
5-polytopes
Articles containing video clips