4-hypercube
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a tesseract or 4-cube is a
four-dimensional Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called ''dimensions'' ...
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
, analogous to a two-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
al
square In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
and a three-dimensional
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square
faces The face is the front of the head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affect the ...
, the
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
of the tesseract consists of eight cubical cells, meeting at
right angle In geometry and trigonometry, a right angle is an angle of exactly 90 Degree (angle), degrees or radians corresponding to a quarter turn (geometry), turn. If a Line (mathematics)#Ray, ray is placed so that its endpoint is on a line and the ad ...
s. The tesseract is one of the six
convex regular 4-polytope In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six co ...
s. The tesseract is also called an 8-cell, C8, (regular) octachoron, or cubic prism. It is the four-dimensional measure polytope, taken as a unit for hypervolume. Coxeter labels it the polytope. The term ''hypercube'' without a dimension reference is frequently treated as a synonym for this specific
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
. The ''
Oxford English Dictionary The ''Oxford English Dictionary'' (''OED'') is the principal historical dictionary of the English language, published by Oxford University Press (OUP), a University of Oxford publishing house. The dictionary, which published its first editio ...
'' traces the word ''tesseract'' to
Charles Howard Hinton Charles Howard Hinton (1853 – 30 April 1907) was a British mathematician and writer of science fiction works titled ''Scientific Romances''. He was interested in n-dimensional space, higher dimensions, particularly the Four-dimensional space ...
's 1888 book '' A New Era of Thought''. The term derives from the Greek ( 'four') and ( 'ray'), referring to the four edges from each vertex to other vertices. Hinton originally spelled the word as ''tessaract''.


Geometry

As a
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitive group action, transitively on its flag (geometry), flags, thus giving it the highest degree of symmetry. In particular, all its elements or -faces (for all , w ...
with three
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
s folded together around every edge, it has
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, wh ...
with hyperoctahedral symmetry of order 384. Constructed as a 4D
hyperprism In geometry, a prism is a polyhedron comprising an polygon base, a second base which is a translated copy (rigidly moved without rotation) of the first, and other faces, necessarily all parallelograms, joining corresponding sides of the tw ...
made of two parallel cubes, it can be named as a composite Schläfli symbol  × , with symmetry order 96. As a 4-4
duoprism In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an -polytope and an -polytope is an -polytope, wher ...
, a
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
of two
squares In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
, it can be named by a composite Schläfli symbol ×, with symmetry order 64. As an
orthotope In geometry, a hyperrectangle (also called a box, hyperbox, k-cell or orthotopeCoxeter, 1973), is the generalization of a rectangle (a plane figure) and the rectangular cuboid (a solid figure) to higher dimensions. A necessary and sufficient con ...
it can be represented by composite Schläfli symbol  ×  ×  ×  or 4, with symmetry order 16. Since each vertex of a tesseract is adjacent to four edges, the
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
of the tesseract is a regular
tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
. The
dual polytope In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other ...
of the tesseract is the
16-cell In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the ...
with Schläfli symbol , with which it can be combined to form the compound of tesseract and 16-cell. Each edge of a regular tesseract is of the same length. This is of interest when using tesseracts as the basis for a
network topology Network topology is the arrangement of the elements (Data link, links, Node (networking), nodes, etc.) of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, ...
to link multiple processors in
parallel computing Parallel computing is a type of computing, computation in which many calculations or Process (computing), processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. ...
: the distance between two nodes is at most 4 and there are many different paths to allow weight balancing. A tesseract is bounded by eight three-dimensional
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
s. Each pair of non-parallel hyperplanes intersects to form 24 square faces. Three cubes and three squares intersect at each edge. There are four cubes, six squares, and four edges meeting at every vertex. All in all, a tesseract consists of 8 cubes, 24 squares, 32 edges, and 16 vertices.


Coordinates

A ''unit tesseract'' has side length , and is typically taken as the basic unit for hypervolume in 4-dimensional space. ''The'' unit tesseract in a
Cartesian coordinate system In geometry, a Cartesian coordinate system (, ) in a plane (geometry), plane is a coordinate system that specifies each point (geometry), point uniquely by a pair of real numbers called ''coordinates'', which are the positive and negative number ...
for 4-dimensional space has two opposite vertices at coordinates and , and other vertices with coordinates at all possible combinations of s and s. It is the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
of the closed
unit interval In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysi ...
in each axis. Sometimes a unit tesseract is centered at the origin, so that its coordinates are the more symmetrical \bigl(, \pm\tfrac12, \pm\tfrac12, \pm\tfrac12 \bigr). This is the Cartesian product of the closed interval \bigl \tfrac12\bigr/math> in each axis. Another commonly convenient tesseract is the Cartesian product of the closed interval in each axis, with vertices at coordinates . This tesseract has side length 2 and hypervolume .


Net

An unfolding of a
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
is called a net. There are 261 distinct nets of the tesseract. The unfoldings of the tesseract can be counted by mapping the nets to ''paired trees'' (a
tree In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, e.g., including only woody plants with secondary growth, only ...
together with a
perfect matching In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph with edges and vertices , a perfect matching in is a subset of , such that every vertex in is adjacent to exact ...
in its
complement Complement may refer to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class collections into complementary sets * Complementary color, in the visu ...
). Each of the 261 nets can tile 3-space.


Construction

The construction of
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
s can be imagined the following way: * 1-dimensional: Two points A and B can be connected to become a line, giving a new line segment AB. * 2-dimensional: Two parallel line segments AB and CD separated by a distance of AB can be connected to become a square, with the corners marked as ABCD. * 3-dimensional: Two parallel squares ABCD and EFGH separated by a distance of AB can be connected to become a cube, with the corners marked as ABCDEFGH. * 4-dimensional: Two parallel cubes ABCDEFGH and IJKLMNOP separated by a distance of AB can be connected to become a tesseract, with the corners marked as ABCDEFGHIJKLMNOP. However, this parallel positioning of two cubes such that their 8 corresponding pairs of vertices are each separated by a distance of AB can only be achieved in a space of 4 or more dimensions. The 8 cells of the tesseract may be regarded (three different ways) as two interlocked rings of four cubes. The tesseract can be decomposed into smaller 4-polytopes. It is the convex hull of the compound of two demitesseracts ( 16-cells). It can also be triangulated into 4-dimensional
simplices In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
( irregular 5-cells) that share their vertices with the tesseract. It is known that there are such triangulations and that the fewest 4-dimensional simplices in any of them is 16. The dissection of the tesseract into instances of its characteristic simplex (a particular orthoscheme with Coxeter diagram ) is the most basic direct construction of the tesseract possible. The characteristic 5-cell of the 4-cube is a fundamental region of the tesseract's defining
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
, the group which generates the B4 polytopes. The tesseract's characteristic simplex directly ''generates'' the tesseract through the actions of the group, by reflecting itself in its own bounding facets (its ''mirror walls'').


Radial equilateral symmetry

The radius of a
hypersphere In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point ...
circumscribed about a regular polytope is the distance from the polytope's center to one of the vertices, and for the tesseract this radius is equal to its edge length; the diameter of the sphere, the length of the diagonal between opposite vertices of the tesseract, is twice the edge length. Only a few uniform
polytopes In elementary geometry, a polytope is a geometric object with Flat (geometry), flat sides (''Face (geometry), faces''). Polytopes are the generalization of three-dimensional polyhedron, polyhedra to any number of dimensions. Polytopes may exist ...
have this property, including the four-dimensional tesseract and
24-cell In four-dimensional space, four-dimensional geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octa ...
, the three-dimensional
cuboctahedron A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertex (geometry), vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edge (geometry), edges, each separating a tr ...
, and the two-dimensional
hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A regular hexagon is de ...
. In particular, the tesseract is the only hypercube (other than a zero-dimensional point) that is ''radially equilateral''. The longest vertex-to-vertex diagonal of an n-dimensional hypercube of unit edge length is \sqrt, which for the square is \sqrt2, for the cube is \sqrt3, and only for the tesseract is \sqrt4 = 2 edge lengths. An axis-aligned tesseract inscribed in a unit-radius 3-sphere has vertices with coordinates \bigl(, \pm\tfrac12, \pm\tfrac12, \pm\tfrac12\bigr).


Properties

For a tesseract with side length : * Hypervolume (4D): H=s^4 * Surface "volume" (3D): SV=8s^3 * Face diagonal: d_\mathrm=\sqrt s * Cell diagonal: d_\mathrm=\sqrt s *4-space diagonal: d_\mathrm=2s


As a configuration

This configuration matrix represents the tesseract. The rows and columns correspond to vertices, edges, faces, and cells. The diagonal numbers say how many of each element occur in the whole tesseract. The diagonal reduces to the f-vector (16,32,24,8). The nondiagonal numbers say how many of the column's element occur in or at the row's element. For example, the 2 in the first column of the second row indicates that there are 2 vertices in (i.e., at the extremes of) each edge; the 4 in the second column of the first row indicates that 4 edges meet at each vertex. The bottom row defines they facets, here cubes, have f-vector (8,12,6). The next row left of diagonal is ridge elements (facet of cube), here a square, (4,4). The upper row is the f-vector of the
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
, here tetrahedra, (4,6,4). The next row is vertex figure ridge, here a triangle, (3,3). \begin\begin16 & 4 & 6 & 4 \\ 2 & 32 & 3 & 3 \\ 4 & 4 & 24 & 2 \\ 8 & 12 & 6 & 8 \end\end


Projections

It is possible to project tesseracts into three- and two-dimensional spaces, similarly to projecting a cube into two-dimensional space. The ''cell-first'' parallel
projection Projection or projections may refer to: Physics * Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction * The display of images by a projector Optics, graphics, and carto ...
of the tesseract into three-dimensional space has a cubical envelope. The nearest and farthest cells are projected onto the cube, and the remaining six cells are projected onto the six square faces of the cube. The ''face-first'' parallel projection of the tesseract into three-dimensional space has a
cuboid In geometry, a cuboid is a hexahedron with quadrilateral faces, meaning it is a polyhedron with six Face (geometry), faces; it has eight Vertex (geometry), vertices and twelve Edge (geometry), edges. A ''rectangular cuboid'' (sometimes also calle ...
al envelope. Two pairs of cells project to the upper and lower halves of this envelope, and the four remaining cells project to the side faces. The ''edge-first'' parallel projection of the tesseract into three-dimensional space has an envelope in the shape of a
hexagonal prism In geometry, the hexagonal prism is a Prism (geometry), prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 face (geometry), faces, 18 Edge (geometry), edges, and 12 vertex (geometry), vertices.. As a semiregular polyhedro ...
. Six cells project onto rhombic prisms, which are laid out in the hexagonal prism in a way analogous to how the faces of the 3D cube project onto six rhombs in a hexagonal envelope under vertex-first projection. The two remaining cells project onto the prism bases. The ''vertex-first'' parallel projection of the tesseract into three-dimensional space has a rhombic dodecahedral envelope. Two vertices of the tesseract are projected to the origin. There are exactly two ways of dissecting a rhombic dodecahedron into four congruent
rhombohedra In geometry, a rhombohedron (also called a rhombic hexahedron or, inaccurately, a rhomboid) is a special case of a parallelepiped in which all six faces are congruent rhombus, rhombi. It can be used to define the rhombohedral lattice system, a Ho ...
, giving a total of eight possible rhombohedra, each a projected
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
of the tesseract. This projection is also the one with maximal volume. One set of projection vectors are , , .


Tessellation

The tesseract, like all
hypercubes In geometry, a hypercube is an N-dimensional space, ''n''-dimensional analogue of a Square (geometry), square (two-dimensional, ) and a cube (Three-dimensional, ); the special case for Four-dimensional space, is known as a ''tesseract''. It is ...
, tessellates
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. The self-dual
tesseractic honeycomb In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol , and consisting of a packing of tesseracts (4-hypercubes). Its vertex fi ...
consisting of 4 tesseracts around each face has Schläfli symbol . Hence, the tesseract has a dihedral angle of 90°. The tesseract's radial equilateral symmetry makes its tessellation the unique regular body-centered cubic lattice of equal-sized spheres, in any number of dimensions.


Related polytopes and honeycombs

The tesseract is 4th in a series of
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
: The tesseract (8-cell) is the third in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). As a uniform
duoprism In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an -polytope and an -polytope is an -polytope, wher ...
, the tesseract exists in a sequence of uniform duoprisms: ×. The regular tesseract, along with the
16-cell In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the ...
, exists in a set of 15 uniform 4-polytopes with the same symmetry. The tesseract exists in a sequence of regular 4-polytopes and honeycombs, with
tetrahedral In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
s, . The tesseract is also in a sequence of regular 4-polytope and honeycombs, with
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
cells. The
regular complex polytope In geometry, a complex polytope is a generalization of a polytope in real coordinate space, real space to an analogous structure in a Complex number, complex Hilbert space, where each real dimension is accompanied by an imaginary number, imaginary ...
42, , in \mathbb^2 has a real representation as a tesseract or 4-4
duoprism In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an -polytope and an -polytope is an -polytope, wher ...
in 4-dimensional space. 42 has 16 vertices, and 8 4-edges. Its symmetry is 4 sub>2, order 32. It also has a lower symmetry construction, , or 4×4, with symmetry 4 sub>4, order 16. This is the symmetry if the red and blue 4-edges are considered distinct.


In popular culture

Since their discovery, four-dimensional hypercubes have been a popular theme in art, architecture, and science fiction. Notable examples include: * " And He Built a Crooked House",
Robert Heinlein Robert Anson Heinlein ( ; July 7, 1907 – May 8, 1988) was an American science fiction author, aeronautical engineer, and naval officer. Sometimes called the "dean of science fiction writers", he was among the first to emphasize scientific acc ...
's 1940 science fiction story featuring a building in the form of a four-dimensional hypercube. This and
Martin Gardner Martin Gardner (October 21, 1914May 22, 2010) was an American popular mathematics and popular science writer with interests also encompassing magic, scientific skepticism, micromagic, philosophy, religion, and literatureespecially the writin ...
's "The No-Sided Professor", published in 1946, are among the first in science fiction to introduce readers to the Moebius band, the
Klein bottle In mathematics, the Klein bottle () is an example of a Orientability, non-orientable Surface (topology), surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the ...
, and the hypercube (tesseract). * ''
Crucifixion (Corpus Hypercubus) ''Crucifixion (Corpus Hypercubus)'' is a 1954 oil-on-canvas painting by Salvador Dalí. A nontraditional, surrealism, surrealist Crucifixion in art, portrayal of the Crucifixion, it depicts Christ on a polyhedron net of a tesseract (hypercube). ...
'', a 1954 oil painting by Salvador Dalí featuring a four-dimensional hypercube unfolded into a three-dimensional Latin cross. * The
Grande Arche La Grande Arche de la Défense (; "The Great Arch of the Defense"), originally called La Grande Arche de la Fraternité (; "Fraternity"), is a monument and building in the business district of La Défense and in the commune of Puteaux, to the west ...
, a monument and building near Paris, France, completed in 1989. According to the monument's engineer, Erik Reitzel, the Grande Arche was designed to resemble the projection of a hypercube. * '' Fez'', a video game where one plays a character who can see beyond the two dimensions other characters can see, and must use this ability to solve platforming puzzles. Features "Dot", a tesseract who helps the player navigate the world and tells how to use abilities, fitting the theme of seeing beyond human perception of known dimensional space. The word ''tesseract'' has been adopted for numerous other uses in popular culture, including as a plot device in works of science fiction, often with little or no connection to the four-dimensional hypercube; see
Tesseract (disambiguation) A tesseract is a four-dimensional analog of the cube. Tesseract may also refer to: Literature * The Tesseract (novel), ''The Tesseract'' (novel), by Alex Garland (1998) Film * The Tesseract (film), ''The Tesseract'' (film), a 2003 film based on ...
.


Notes


References

* * F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss (1995) ''Kaleidoscopes: Selected Writings of H.S.M. Coxeter'', Wiley-Interscience Publication

** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'',
Mathematische Zeitschrift ''Mathematische Zeitschrift'' ( German for ''Mathematical Journal'') is a mathematical journal for pure and applied mathematics published by Springer Verlag. History The journal was founded in 1917, with its first issue appearing in 1918. It wa ...
46 (1940) 380–407, MR 2,10] ** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* * John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss (2008) ''The Symmetries of Things'', (Chapter 26. pp. 409: Hemicubes: 1n1) * T. Gosset (1900) ''On the Regular and Semi-Regular Figures in Space of n Dimensions'',
Messenger of Mathematics The ''Messenger of Mathematics'' is a defunct British mathematics journal. The founding editor-in-chief was William Allen Whitworth with Charles Taylor and volumes 1–58 were published between 1872 and 1929. James Whitbread Lee Glaisher was t ...
, Macmillan. * * Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966) *
Victor Schlegel Victor Schlegel (4 March 1843 – 22 November 1905) was a German mathematician. He is remembered for promoting the geometric algebra of Hermann Grassmann and for a method of visualizing polytopes called Schlegel diagrams. In the nineteenth ce ...
(1886) ''Ueber Projectionsmodelle der regelmässigen vier-dimensionalen Körper'', Waren.


External links

*
ken perlin's home page
A way to visualize hypercubes, by
Ken Perlin Kenneth H. Perlin is a professor in the Department of Computer Science at New York University, founding director of the Media Research Lab at NYU, director of the Future Reality Lab at NYU, and the director of the Games for Learning Institute. He ...

Some Notes on the Fourth Dimension
includes animated tutorials on several different aspects of the tesseract, b
Davide P. Cervone


{{Polytopes Algebraic topology Regular 4-polytopes Cubes