In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a hypersphere or 3-sphere is a 4-dimensional analogue of a
sphere
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
, and is the 3-dimensional
''n''-sphere. In 4-dimensional
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, it is the set of points equidistant from a fixed central point. The interior of a 3-sphere is a 4-ball.
It is called a 3-sphere because topologically, the surface itself is 3-dimensional, even though it is curved into the 4th dimension. For example, when traveling on a 3-sphere, you can go north and south, east and west, or along a 3rd set of cardinal directions. This means that a 3-sphere is an example of a
3-manifold
In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane (geometry), plane (a tangent ...
.
Definition
In
coordinates
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the Position (geometry), position of the Point (geometry), points or other geometric elements on a manifold such as ...
, a 3-sphere with center and radius is the set of all points in real,
4-dimensional space () such that
:
The 3-sphere centered at the origin with radius 1 is called the unit 3-sphere and is usually denoted :
:
It is often convenient to regard as the space with 2
complex dimensions () or the
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quater ...
s (). The unit 3-sphere is then given by
:
or
:
This description as the
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quater ...
s of
norm
Norm, the Norm or NORM may refer to:
In academic disciplines
* Normativity, phenomenon of designating things as good or bad
* Norm (geology), an estimate of the idealised mineral content of a rock
* Norm (philosophy), a standard in normative e ...
one identifies the 3-sphere with the
versor
In mathematics, a versor is a quaternion of Quaternion#Norm, norm one, also known as a unit quaternion. Each versor has the form
:u = \exp(a\mathbf) = \cos a + \mathbf \sin a, \quad \mathbf^2 = -1, \quad a \in ,\pi
where the r2 = −1 conditi ...
s in the quaternion
division ring
In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicativ ...
. Just as the
unit circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
is important for planar
polar coordinates
In mathematics, the polar coordinate system specifies a given point (mathematics), point in a plane (mathematics), plane by using a distance and an angle as its two coordinate system, coordinates. These are
*the point's distance from a reference ...
, so the 3-sphere is important in the polar view of 4-space involved in quaternion multiplication. See
polar decomposition of a quaternion for details of this development of the three-sphere.
This view of the 3-sphere is the basis for the study of
elliptic space as developed by
Georges Lemaître
Georges Henri Joseph Édouard Lemaître ( ; ; 17 July 1894 – 20 June 1966) was a Belgian Catholic priest, theoretical physicist, and mathematician who made major contributions to cosmology and astrophysics. He was the first to argue that the ...
.
Properties
Elementary properties
The 3-dimensional surface volume of a 3-sphere of radius is
:
while the 4-dimensional hypervolume (the content of the 4-dimensional region, or ball, bounded by the 3-sphere) is
:
Every non-empty intersection of a 3-sphere with a three-dimensional
hyperplane
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
is a 2-sphere (unless the hyperplane is tangent to the 3-sphere, in which case the intersection is a single point). As a 3-sphere moves through a given three-dimensional hyperplane, the intersection starts out as a point, then becomes a growing 2-sphere that reaches its maximal size when the hyperplane cuts right through the "equator" of the 3-sphere. Then the 2-sphere shrinks again down to a single point as the 3-sphere leaves the hyperplane.
In a given three-dimensional hyperplane, a 3-sphere can rotate about an "equatorial plane" (analogous to a 2-sphere rotating about a central axis), in which case it appears to be a 2-sphere whose size is constant.
Topological properties
A 3-sphere is a
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact, a type of agreement used by U.S. states
* Blood compact, an ancient ritual of the Philippines
* Compact government, a t ...
,
connected, 3-dimensional
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
without boundary. It is also
simply connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving ...
. What this means, in the broad sense, is that any loop, or circular path, on the 3-sphere can be continuously shrunk to a point without leaving the 3-sphere. The
Poincaré conjecture
In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.
Originally conjectured b ...
, proved in 2003 by
Grigori Perelman
Grigori Yakovlevich Perelman (, ; born 13June 1966) is a Russian mathematician and geometer who is known for his contributions to the fields of geometric analysis, Riemannian geometry, and geometric topology. In 2005, Perelman resigned from his ...
, provides that the 3-sphere is the only three-dimensional manifold (up to
homeomorphism
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
) with these properties.
The 3-sphere is homeomorphic to the
one-point compactification
In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Al ...
of . In general, any
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
that is homeomorphic to the 3-sphere is called a topological 3-sphere.
The
homology group
In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian grou ...
s of the 3-sphere are as follows: and are both
infinite cyclic, while for all other indices . Any topological space with these homology groups is known as a
homology 3-sphere. Initially
Poincaré
Poincaré is a French surname. Notable people with the surname include:
* Henri Poincaré
Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philos ...
conjectured that all homology 3-spheres are homeomorphic to , but then he himself constructed a non-homeomorphic one, now known as the
Poincaré homology sphere. Infinitely many homology spheres are now known to exist. For example, a
Dehn filling with slope on any
knot
A knot is an intentional complication in Rope, cordage which may be practical or decorative, or both. Practical knots are classified by function, including List of hitch knots, hitches, List of bend knots, bends, List of loop knots, loop knots, ...
in the 3-sphere gives a homology sphere; typically these are not homeomorphic to the 3-sphere.
As to the
homotopy groups
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about Loop (topology), loops in a Mathematic ...
, we have and is infinite cyclic. The higher-homotopy groups () are all
finite abelian but otherwise follow no discernible pattern. For more discussion see
homotopy groups of spheres
In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure ...
.
Geometric properties
The 3-sphere is naturally a
smooth manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may ...
, in fact, a closed
embedded submanifold
Embedded or embedding (alternatively imbedded or imbedding) may refer to:
Science
* Embedding, in mathematics, one instance of some mathematical object contained within another instance
** Graph embedding
* Embedded generation, a distributed ge ...
of . The
Euclidean metric
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is oc ...
on induces a
metric
Metric or metrical may refer to:
Measuring
* Metric system, an internationally adopted decimal system of measurement
* An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement
Mathematics
...
on the 3-sphere giving it the structure of a
Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
. As with all spheres, the 3-sphere has constant positive
sectional curvature
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a po ...
equal to where is the radius.
Much of the interesting geometry of the 3-sphere stems from the fact that the 3-sphere has a natural
Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
structure given by quaternion multiplication (see the section below on
group structure). The only other spheres with such a structure are the 0-sphere and the 1-sphere (see
circle group
In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers
\mathbb T = \.
The circle g ...
).
Unlike the 2-sphere, the 3-sphere admits nonvanishing
vector field
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
s (
sections
Section, Sectioning, or Sectioned may refer to:
Arts, entertainment and media
* Section (music), a complete, but not independent, musical idea
* Section (typography), a subdivision, especially of a chapter, in books and documents
** Section sig ...
of its
tangent bundle
A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
). One can even find three linearly independent and nonvanishing vector fields. These may be taken to be any left-invariant vector fields forming a basis for the
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
of the 3-sphere. This implies that the 3-sphere is
parallelizable
In mathematics, a differentiable manifold M of dimension ''n'' is called parallelizable if there exist Smooth function, smooth vector fields
\
on the manifold, such that at every point p of M the tangent vectors
\
provide a Basis of a vector space, ...
. It follows that the tangent bundle of the 3-sphere is
trivial. For a general discussion of the number of linear independent vector fields on a -sphere, see the article
vector fields on spheres.
There is an interesting
action
Action may refer to:
* Action (philosophy), something which is done by a person
* Action principles the heart of fundamental physics
* Action (narrative), a literary mode
* Action fiction, a type of genre fiction
* Action game, a genre of video gam ...
of the
circle group
In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers
\mathbb T = \.
The circle g ...
on giving the 3-sphere the structure of a
principal circle bundle known as the
Hopf bundle. If one thinks of as a subset of , the action is given by
:
.
The
orbit space
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S.
Many sets of transformations form a group under fun ...
of this action is homeomorphic to the two-sphere . Since is not homeomorphic to , the Hopf bundle is nontrivial.
Topological construction
There are several well-known constructions of the three-sphere. Here we describe gluing a pair of three-balls and then the one-point compactification.
Gluing
A 3-sphere can be constructed
topologically by
"gluing" together the boundaries of a pair of 3-
balls. The boundary of a 3-ball is a 2-sphere, and these two 2-spheres are to be identified. That is, imagine a pair of 3-balls of the same size, then superpose them so that their 2-spherical boundaries match, and let matching pairs of points on the pair of 2-spheres be identically equivalent to each other. In analogy with the case of the 2-sphere (see below), the gluing surface is called an equatorial sphere.
Note that the interiors of the 3-balls are not glued to each other. One way to think of the fourth dimension is as a continuous
real-valued function
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.
Real-valued functions of a real variable (commonly called ''real ...
of the 3-dimensional coordinates of the 3-ball, perhaps considered to be "temperature". We take the "temperature" to be zero along the gluing 2-sphere and let one of the 3-balls be "hot" and let the other 3-ball be "cold". The "hot" 3-ball could be thought of as the "upper hemisphere" and the "cold" 3-ball could be thought of as the "lower hemisphere". The temperature is highest/lowest at the centers of the two 3-balls.
This construction is analogous to a construction of a 2-sphere, performed by gluing the boundaries of a pair of disks. A disk is a 2-ball, and the boundary of a disk is a circle (a 1-sphere). Let a pair of disks be of the same diameter. Superpose them and glue corresponding points on their boundaries. Again one may think of the third dimension as temperature. Likewise, we may inflate the 2-sphere, moving the pair of disks to become the northern and southern hemispheres.
One-point compactification
After removing a single point from the 2-sphere, what remains is homeomorphic to the Euclidean plane. In the same way, removing a single point from the 3-sphere yields three-dimensional space.
An extremely useful way to see this is via
stereographic projection
In mathematics, a stereographic projection is a perspective transform, perspective projection of the sphere, through a specific point (geometry), point on the sphere (the ''pole'' or ''center of projection''), onto a plane (geometry), plane (th ...
. We first describe the lower-dimensional version.
Rest the south pole of a unit 2-sphere on the -plane in three-space. We map a point of the sphere (minus the north pole ) to the plane by sending to the intersection of the line with the plane. Stereographic projection of a 3-sphere (again removing the north pole) maps to three-space in the same manner. (Notice that, since stereographic projection is
conformal, round spheres are sent to round spheres or to planes.)
A somewhat different way to think of the one-point compactification is via the
exponential map. Returning to our picture of the unit two-sphere sitting on the Euclidean plane: Consider a geodesic in the plane, based at the origin, and map this to a geodesic in the two-sphere of the same length, based at the south pole. Under this map all points of the circle of radius are sent to the north pole. Since the open
unit disk
In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1:
:D_1(P) = \.\,
The closed unit disk around ''P'' is the set of points whose d ...
is homeomorphic to the Euclidean plane, this is again a one-point compactification.
The exponential map for 3-sphere is similarly constructed; it may also be discussed using the fact that the 3-sphere is the
Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
of unit quaternions.
Coordinate systems on the 3-sphere
The four Euclidean coordinates for are redundant since they are subject to the condition that . As a 3-dimensional manifold one should be able to parameterize by three coordinates, just as one can parameterize the 2-sphere using two coordinates (such as
latitude
In geography, latitude is a geographic coordinate system, geographic coordinate that specifies the north-south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at t ...
and
longitude
Longitude (, ) is a geographic coordinate that specifies the east- west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek lett ...
). Due to the nontrivial topology of it is impossible to find a single set of coordinates that cover the entire space. Just as on the 2-sphere, one must use ''at least'' two
coordinate charts. Some different choices of coordinates are given below.
Hyperspherical coordinates
It is convenient to have some sort of
hyperspherical coordinates on in analogy to the usual
spherical coordinates
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are
* the radial distance along the line connecting the point to a fixed point ...
on . One such choice — by no means unique — is to use , where
:
where and run over the range 0 to , and runs over 0 to 2. Note that, for any fixed value of , and parameterize a 2-sphere of radius
, except for the degenerate cases, when equals 0 or , in which case they describe a point.
The
round metric on the 3-sphere in these coordinates is given by
: