HOME





Turret Clocks
A turret clock or tower clock is a clock designed to be mounted high in the wall of a building, usually in a clock tower, in public buildings such as churches, university buildings, and town halls. As a public amenity to enable the community to tell the time, it has a large face visible from far away, and often a striking mechanism which rings bells upon the hours. The turret clock is one of the earliest types of clock. Beginning in 12th century Europe, towns and monasteries built clocks in high towers to strike bells to call the community to prayer. Public clocks played an important timekeeping role in daily life until the 20th century, when accurate watches became cheap enough for ordinary people to afford. Today the time-disseminating functions of turret clocks are not much needed, and they are mainly built and preserved for traditional, decorative, and artistic reasons. To turn the large hands and run the striking train, the mechanism of turret clocks must be more powerfu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elizabeth Tower
Big Ben is the nickname for the Great Bell of the Great Clock of Westminster, and, Pars pro toto, by extension, for the clock tower itself, which stands at the north end of the Palace of Westminster in London, England. Originally named the Clock Tower, it was renamed Elizabeth Tower in 2012 to mark the Diamond Jubilee of Elizabeth II, Diamond Jubilee of Queen Elizabeth II. The clock is a striking clock with five bells. It was designed by Charles Barry, Sir Charles Barry and Augustus Pugin in the Perpendicular Gothic and Gothic Revival architecture, Gothic Revival styles and was completed in 1859. It is elaborately decorated with stone carvings and features symbols related to the four countries of the United Kingdom and the Tudor dynasty. A Latin inscription celebrates Queen Victoria, under Victorian era, whose reign the palace was built. It stands tall, and the climb from ground level to the belfry (architecture), belfry is 334 steps. Its base is square, measuring on each si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per metre squared, or pascal-seconds. Viscosity quantifies the internal friction, frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's center line than near its walls. Experiments show that some stress (physics), stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anchor Escapement
In horology, the anchor escapement is a type of escapement used in pendulum clocks. The escapement is a mechanism in a mechanical clock that maintains the swing of the pendulum by giving it a small push each swing, and allows the clock's wheels to advance a fixed amount with each swing, moving the clock's hands forward. The anchor escapement was so named because one of its principal parts is shaped vaguely like a ship's anchor. The anchor escapement was invented by clockmaker William Clement, who popularized the anchor in his invention of the longcase or grandfather clock around 1680. Clement's invention was a substantial improvement on Robert Hooke's constant force escapement of 1671. The oldest known anchor clock is Wadham College Clock, a tower clock built at Wadham College, Oxford, in 1670, probably by clockmaker Joseph Knibb. The anchor became the standard escapement used in almost all pendulum clocks. A more accurate variation without recoil called the deadbeat escapem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Verge And Foliot
The verge (or crown wheel) escapement is the earliest known type of mechanical escapement, the mechanism in a mechanical clock that controls its rate by allowing the gear train to advance at regular intervals or 'ticks'. Verge escapements were used from the late 13th century until the mid 19th century in clocks and pocketwatches. The name verge comes from the Latin ''virga'', meaning stick or rod. Its invention is important in the history of technology, because it made possible the development of all-mechanical clocks. This caused a shift from measuring time by continuous processes, such as the flow of liquid in water clocks, to repetitive, oscillatory processes, such as the swing of pendulums, which had the potential to be more accurate., p.31 Oscillating timekeepers keep time for all modern clocks. Verge and foliot clocks The verge escapement dates from 13th-century Europe, where its invention led to the development of the first all-mechanical clocks. Starting in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Foliot (timepiece)
Foliot may refer to: * Foliot (timepiece), part of the verge escapement for early clocks * A member of a fictional people in the high fantasy novel ''The Worm Ouroboros'' by E. R. Eddison * A fictional magical creature in the ''Bartimaeus Sequence'' by Jonathan Stroud Surname

* Gilbert Foliot (1110-1187), Abbot of Gloucester, Bishop of Hereford, Bishop of London * Hugh Foliot (1155–1234), Bishop of Hereford * Jordan Foliot (c 1249-1298), 1st Baron, Foliot, Lord of the Manor of Wellow, Nottinghamshire * Ralph Foliot (died c. 1198), nephew of Gilbert * Richard Foliot (fl. 1290), Knight of Jordan Castle, father of Jordan * Robert Foliot (died 1186), Bishop of Hereford {{Disambiguation, surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Galileo Galilei
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a polymath. He was born in the city of Pisa, then part of the Duchy of Florence. Galileo has been called the father of observational astronomy, modern-era classical physics, the scientific method, and modern science. Galileo studied speed and velocity, gravity and free fall, the principle of relativity, inertia, projectile motion and also worked in applied science and technology, describing the properties of the pendulum and "hydrostatic balances". He was one of the earliest Renaissance developers of the thermoscope and the inventor of various sector (instrument), military compasses. With an improved telescope he built, he observed the stars of the Milky Way, the phases of Venus, the Galilean moons, four largest satellites of Jupiter, Saturn's r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pendulum
A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing. Pendulums were widely used in early mechanical clocks for timekeeping. The regular motion of pendulums was used for timekeeping and was the world's most accurate timekeeping technology until the 1930s. The pendulum clock invented by Christiaan Huygens in 1656 became the world's standard timekeeper, used in homes and offices for 270 years, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Christiaan Huygens
Christiaan Huygens, Halen, Lord of Zeelhem, ( , ; ; also spelled Huyghens; ; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution. In physics, Huygens made seminal contributions to optics and mechanics, while as an astronomer he studied the rings of Saturn and discovered its largest moon, Titan (moon), Titan. As an engineer and inventor, he improved the design of telescopes and invented the pendulum clock, the most accurate timekeeper for almost 300 years. A talented mathematician and physicist, his works contain the first idealization of a physical problem by a set of Mathematical model, mathematical parameters, and the first mathematical and mechanistic explanation of an unobservable physical phenomenon.Dijksterhuis, F.J. (2008) Stevin, Huygens and the Dutch republic. ''Nieuw archief voor wiskunde'', ''5'', pp. 100–10/ref> Huygens first identified the correct la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Resonant Frequency
Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximum amplitude response in the system. When this happens, the object or system absorbs energy from the external force and starts vibrating with a larger amplitude. Resonance can occur in various systems, such as mechanical, electrical, or acoustic systems, and it is often desirable in certain applications, such as musical instruments or radio receivers. However, resonance can also be detrimental, leading to excessive vibrations or even structural failure in some cases. All systems, including molecular systems and particles, tend to vibrate at a natural frequency depending upon their structure; when there is very little damping this frequency is approximately equal to, but slightly above, the resonant frequency. When an oscillating force, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harmonic Oscillator
In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force ''F'' proportional to the displacement ''x'': \vec F = -k \vec x, where ''k'' is a positive constant. The harmonic oscillator model is important in physics, because any mass subject to a force in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are exploited in many manmade devices, such as clocks and radio circuits. If ''F'' is the only force acting on the system, the system is called a simple harmonic oscillator, and it undergoes simple harmonic motion: sinusoidal oscillations about the equilibrium point, with a constant amplitude and a constant frequency (which does not depend on the amplitude). If a frictional force ( damping) proportional to the velocity is also present, the harmonic oscillator is described as a damped oscillator. Depending on the friction ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Restoring Force
In physics, the restoring force is a force that acts to bring a body to its equilibrium position. The restoring force is a function only of position of the mass or particle, and it is always directed back toward the equilibrium position of the system. The restoring force is often referred to in simple harmonic motion. The force responsible for restoring original size and shape is called the restoring force. An example is the action of a spring. An idealized spring exerts a force proportional to the amount of deformation of the spring from its equilibrium length, exerted in a direction oppose the deformation. Pulling the spring to a greater length causes it to exert a force that brings the spring back toward its equilibrium length. The amount of force can be determined by multiplying the spring constant, characteristic of the spring, by the amount of stretch, also known as Hooke's law In physics, Hooke's law is an empirical law which states that the force () needed t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Balance Spring
A balance spring, or hairspring, is a spring attached to the balance wheel in mechanical timepieces. It causes the balance wheel to oscillate with a resonant frequency when the timepiece is running, which controls the speed at which the wheels of the timepiece turn, thus the rate of movement of the hands. A regulator lever is often fitted, which can be used to alter the free length of the spring and thereby adjust the rate of the timepiece. The balance spring is an essential adjunct to the balance wheel, causing it to oscillate back and forth. The balance spring and balance wheel together form a harmonic oscillator, which oscillates with a precise period or "beat" resisting external disturbances and is responsible for timekeeping accuracy. The addition of the balance spring to the balance wheel around 1657 by Robert Hooke and Christiaan Huygens greatly increased the accuracy of portable timepieces, transforming early pocketwatches from expensive novelties to useful timekeepe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]