Totally Ordered Group
   HOME





Totally Ordered Group
In mathematics, specifically abstract algebra, a linearly ordered or totally ordered group is a group ''G'' equipped with a total order "≤" that is ''translation-invariant''. This may have different meanings. We say that (''G'', ≤) is a: * left-ordered group if ≤ is left-invariant, that is ''a'' ≤ ''b'' implies ''ca'' ≤ ''cb'' for all ''a'', ''b'', ''c'' in ''G'', * right-ordered group if ≤ is right-invariant, that is ''a'' ≤ ''b'' implies ''ac'' ≤ ''bc'' for all ''a'', ''b'', ''c'' in ''G'', * bi-ordered group if ≤ is bi-invariant, that is it is both left- and right-invariant. A group ''G'' is said to be left-orderable (or right-orderable, or bi-orderable) if there exists a left- (or right-, or bi-) invariant order on ''G''. A simple necessary condition for a group to be left-orderable is to have no elements of finite order; however this is not a sufficient condition. It is equivalent for a group to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Cyclically Ordered Group
In mathematics, a cyclically ordered group is a set with both a group structure and a cyclic order, such that left and right multiplication both preserve the cyclic order. Cyclically ordered groups were first studied in depth by Ladislav Rieger in 1947. They are a generalization of cyclic groups: the infinite cyclic group and the finite cyclic groups . Since a linear order induces a cyclic order, cyclically ordered groups are also a generalization of linearly ordered groups: the rational numbers , the real numbers , and so on. Some of the most important cyclically ordered groups fall into neither previous category: the circle group and its subgroups, such as the subgroup of rational points. Quotients of linear groups It is natural to depict cyclically ordered groups as quotients: one has and . Even a once-linear group like , when bent into a circle, can be thought of as . showed that this picture is a generic phenomenon. For any ordered group and any central elemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Lie Group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (to allow division), or equivalently, the concept of addition and subtraction. Combining these two ideas, one obtains a continuous group where multiplying points and their inverses is continuous. If the multiplication and taking of inverses are smoothness, smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the circle group. Rotating a circle is an example of a continuous symmetry. For an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Lattice (discrete Subgroup)
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R''n'', this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood. The theory is particularly rich for lattices in semisimple Lie groups or more generally in semisimple algebraic groups over local fields. In particular there is a wealth of rigidity results in this setting, and a celebrated theorem of Grigory Margulis states that in most cases all lattices are obtained as arithmetic groups. Lattices are also well-studied in some other classes of groups, in particular groups associated to Kac–Moody algebras and automorphisms groups of regular trees (the latter are known as ''tree lattices''). Lattices a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Dynamical System
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, fluid dynamics, the flow of water in a pipe, the Brownian motion, random motion of particles in the air, and population dynamics, the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real number, real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a Set (mathematics), set, without the need of a Differentiability, smooth space-time structure defined on it. At any given time, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Kaplansky Conjectures
The mathematician Irving Kaplansky is notable for proposing numerous conjectures in several branches of mathematics, including a list of ten conjectures on Hopf algebras. They are usually known as Kaplansky's conjectures. Group rings Let be a field, and a torsion-free group. Kaplansky's ''zero divisor conjecture'' states: * The group ring does not contain nontrivial zero divisors, that is, it is a domain. Two related conjectures are known as, respectively, Kaplansky's ''idempotent conjecture'': * does not contain any non-trivial idempotents, i.e., if , then or . and Kaplansky's ''unit conjecture'' (which was originally made by Graham Higman and popularized by Kaplansky): * does not contain any non-trivial units, i.e., if in , then for some in and in . The zero-divisor conjecture implies the idempotent conjecture and is implied by the unit conjecture. As of 2021, the zero divisor and idempotent conjectures are open. The unit conjecture, however, was disprov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE